²⁴⁸Cm SF decay 1996Ur02

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022					

Parent: ²⁴⁸Cm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=3.48\times10^5$ y 6; %SF decay=8.39 *16* ²⁴⁸Cm-Data from 2014Ma86 (Adopted Levels).

1996Ur02: measured $\gamma\gamma\gamma$ coincidence with Eurogam2 array with 52 Compton-suppressed Ge detectors and 4 LEPS detectors.

¹⁴⁷La identified by transitions depopulating the previously known levels 74.3 keV, 120.8 keV, and 167.4 keV in ¹⁴⁷La (observed in β^- decay of ¹⁴⁷Ba, 1992De38).

Theory: 1996Ur02 show that the octupole correlations in n-rich La isotopes are similar in strength to those in their Ba core nuclei, and stronger than in Cs isotopes, in contradiction with theoretical predictions (1985Le04).

¹⁴⁷La Levels

E(level) [†]	Jπ‡	Comments			
0.0 15.6 74.3 120.8	(5/2+)				
167.4	(7/2 ⁻)	J^{π} : $(3/2^{-},7/2^{-})$ from stretched E1 γ to g.s.; 1996Ur02 exclude $(3/2^{-})$, which would give $J(229)=(3/2^{-},5/2^{-},7/2^{-})$, and would make 229 level populated in ¹⁴⁷ Ba β^{-} decay (from $(5/2^{-})$ and γ decay directly to ¹⁴⁷ La g.s. – neither of them observed (see also 229 level).			
229.2 <mark>&</mark>	$(11/2^{-})^{\#}$	J^{π} : E2 γ to (7/2 ⁻) (1996Ur02 implicitly exclude (9/2 ⁻); smaller values excluded by arguments at 167 level).			
441.0 <mark>&</mark>	$(15/2^{-})^{\#}$				
787.4 <mark>&</mark>	$(19/2^{-})^{\#}$				
1109.7? ^a	(17/2)				
1241.8 <mark>&</mark>	$(23/2^{-})^{\#}$				
1357.6 ^a	(21/2)@	J^{π} : explicitly assigned by 1996Ur02, based on excitation energy and decay pattern (most likely by analogy to ¹⁴⁶ Ba octupole band).			
1589.1 <mark>b</mark>					
1729.6 ^a	(25/2)				
1770.6 <mark>&</mark>	$(27/2^{-})^{\#}$				
1963.9 <mark>b</mark>					
2115.9 ^a	(29/2)				
2309.6 ^{&} 2310.9 ^b	(31/2 ⁻) [#]				
2510.5 2519.3 ^a	$(33/2)^{@}$				
2753.2 ^{&}	$(35/2^{-})^{\#}$				

[†] From 1996Ur02.

[‡] From 1996Ur02 from γ multipolarities based on angular correlations (no values given), $\alpha(\exp)$, $\alpha(K)\exp$, and systematics (¹⁴⁴Ba, ¹⁴⁶Ba, ¹⁴⁵La).

[#] Based on stretched E2 intra-band transitions (based on 1996Ur02 by angular correlations).

[@] Assigned by 1996Ur02 (most likely by analogy to ¹⁴⁶Ba octupole band).

& Band(A): Band 1 (the excitation scheme above 229 keV level resembles the g.s. band in ¹⁴⁶Ba with an octupole band decaying to it (1996Ur02)).

^{*a*} Band(B): Band 2 (similar to the octupole band in ¹⁴⁶Ba).

^b Band(C): band 3.

²⁴⁸Cm SF decay 1996Ur02 (continued)

$\gamma(^{147}\text{La})$

Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
(15.7)	15.6		0.0	$(5/2^+)$		
46.5	120.8		74.3			
46.6	167.4	$(7/2^{-})$	120.8			
61.8	229.2	$(11/2^{-})$	167.4	$(7/2^{-})$	E2	$\alpha(\exp)=12\ 2;\ \alpha(K)\exp=6\ 1\ (1996Ur02)$
						Mult.: based on $\alpha(\exp)$, $\alpha(K)\exp$ from coincidence data.
74.3	74.3	(7/2-)	0.0	$(5/2^+)$		
93.0	167.4	$(1/2^{-})$	74.3			
105.3	120.8		15.6	(5/2+)		
120.8	120.8	$(7/2^{-})$	0.0	$(3/2^+)$ $(5/2^+)$	E 1	$\alpha(ayp) = 0.05.2 (1006 \text{ Le} 02)$
107.4	107.4	(1/2)	0.0	(3/2)	EI	u(exp)=0.05 2 (19900102) Mult : based on $u(exp)$ from coincidence data
195.0	2310.9		2115.9	(29/2)		water based on a(exp) non concidence data.
209 [‡]	2519.3	(33/2)	2309.6	$(31/2^{-})$		
211.8	441.0	$(15/2^{-})$	229.2	$(11/2^{-})$	$(\mathbf{F2})^{\dagger}$	
231.5	1589.1	(15/2)	1357.6	(11/2)	(L2)	
234	2753.2	$(35/2^{-})$	2519.3	(23/2)		
234.5	1963.9	(35/2)	1729.6	(25/2)		
345.3	2115.9	(29/2)	1770.6	$(27/2^{-})$		
346.4	787.4	$(19/2^{-})$	441.0	$(15/2^{-})$	(E2) [†]	
347.0	2310.9	(1963.9	(()	
371.8	1729.6	(25/2)	1357.6	(21/2)		
374.5	1963.9		1589.1			
386.3	2115.9	(29/2)	1729.6	(25/2)		
403.4	2519.3	(33/2)	2115.9	(29/2)		
443.6	2753.2	$(35/2^{-})$	2309.6	$(31/2^{-})$	(E2) [†]	
454.4	1241.8	$(23/2^{-})$	787.4	$(19/2^{-})$	(E2) [†]	
487.8	1729.6	(25/2)	1241.8	$(23/2^{-})$		
528.8	1770.6	$(27/2^{-})$	1241.8	$(23/2^{-})$	(E2) [†]	
539.0	2309.6	$(31/2^{-})$	1770.6	$(27/2^{-})$	(E2) [†]	
570.2	1357.6	(21/2)	787.4	$(19/2^{-})$		
668.7 [‡]	1109.7?	(17/2)	441.0	$(15/2^{-})$		

[†] Quadrupole transition (from angular correlations) situated in band 1, most likely (E2) transition (1996Ur02). [‡] Placement of transition in the level scheme is uncertain.

¹⁴⁷₅₇La₉₀

¹⁴⁷₅₇La₉₀