¹⁴⁷Tb ε decay (1.83 min) **1991MeZX**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022					

Parent: ¹⁴⁷Tb: E=50.6 9; J^{π} =(11/2⁻); $T_{1/2}$ =1.83 min 6; $Q(\varepsilon)$ =4614 8; $\%\varepsilon + \%\beta^+$ decay=100.0 ¹⁴⁷Tb-Q(ε): From 2021Wa16.

Measured: Εγ, Ιγ, γγ (1991MeZX), γ, γγ, xγ, γ(t) (1985PiZX); see also 1993Al03, 1974Ne01, 1976ToZO, 1975SpZU, 1973Bo13, 1969Ch32.

1991MeZX and 1985PiZX (same group) are similar, with more precise $I\gamma$'s for data from 1991MeZX, reason for which data is from 1991MeZX when different. Both references have no reported unc's for $E\gamma$'s and $I\gamma$'s.

147Gd Levels

E(level) [†]	$J^{\pi \ddagger}$						
0.0	7/2-	1642.9 8	9/2+	2078.6 7	(9/2,11/2)	3194.9 12	(9/2,11/2,13/2)
997.2 8	$13/2^{+}$	1701.7 <i>13</i>	$11/2^{+}$	2386.3 9	$(13/2)^{-}$	3204.6 6	9/2-,11/2-
1397.3 6	9/2-	1797.7 8	9/2-	2971.4 7	9/2-,11/2-	3322.2 10	9/2-,11/2-
1628.3 10	$7/2^{+}$	1944.0 6	$11/2^{-}$	3005.7 6	9/2-,11/2-	3872.5 13	13/2,11/2

[†] No uncertainties are available for the E_{γ} input. The E(level) values are from a least-squares fit to the E_{γ} data with the assumption that the uncertainties are the same for all the E_{γ} 's.

[‡] Adopted values.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(792 8)	3872.5		0.36	5.2	0.36	εK=0.8279 2; εL=0.1331 2; εM+=0.03899 5
(1342 8)	3322.2		0.67	5.4	0.67	εK=0.8342; εL=0.12808 5; εM+=0.03727 2
(1460 8)	3204.6	0.0024	1.4	5.1	1.4	av E β =210.6 36; ε K=0.8339; ε L=0.12737 6; ε M+=0.03703 2
(1470 8)	3194.9	0.00032	0.17	6.1	0.17	av E β =214.9 36; ε K=0.8338; ε L=0.12731 6; ε M+=0.03701 2
(1659 8)	3005.7	0.015	2.0	5.1	2.0	av E β =298.3 36; ε K=0.8301 3; ε L=0.12589 8; ε M+=0.03656 3
(1693 8)	2971.4	0.0099	1.1	5.4	1.1	av Eβ=313.4 36; εK=0.8289 4; εL=0.12557 8; εM+=0.03647 3
(2278 8)	2386.3	0.017	0.20	6.4	0.22	av Eβ=570.6 36; εK=0.7731 13; εL=0.11560 21; εM+=0.03350
						6
(2586 8)	2078.6	0.016	0.094	6.8	0.11	av Eβ=707.2 36; εK=0.7150 18; εL=0.1064 3; εM+=0.03082 8
(2721 8)	1944.0	0.048	0.21	6.5	0.26	av Eβ=767.3 37; εK=0.6844 19; εL=0.1017 3; εM+=0.02945 9
(2867 8)	1797.7	3.36	11.4	4.8	14.8	av Eβ=832.8 37; εK=0.6487 21; εL=0.0963 3; εM+=0.02786 9
(2963 8)	1701.7	0.11	0.33	6.4	0.44	av Eβ=876.0 37; εK=0.6243 21; εL=0.0925 4; εM+=0.02678 10
(3022 8)	1642.9	0.21	0.56	6.2	0.77	av Eβ=902.5 37; εK=0.6091 21; εL=0.0902 4; εM+=0.02611 10
(3036 8)	1628.3	0.0070	0.018	7.7	0.025	av Eβ=909.1 37; εK=0.6053 22; εL=0.0897 4; εM+=0.02595 10
(3267 8)	1397.3	27.3	50.4	4.3	77.7	av E β =1013.5 37; ε K=0.5446 22; ε L=0.0805 4; ε M+=0.02329
(3667 8)	997.2	0.010	0.012	8.0	0.022	av E β =1195.7 37; ε K=0.4436 20; ε L=0.0654 3; ε M+=0.01891 9

[†] Absolute intensity per 100 decays.

¹⁴⁷Tb ε decay (1.83 min) **1991MeZX** (continued)

 $\gamma(^{147}\text{Gd})$

I γ normalization: $\Sigma I(\gamma + ce)(to g.s.) = 100$.

E_{γ}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [†]	α^{\ddagger}	Comments
442.6 704.5	≈0.6 4.4	2386.3 1701.7	(13/2) ⁻ 11/2 ⁺	1944.0 997.2	11/2 ⁻ 13/2 ⁺	M1	0.01071 15	% $I\gamma \approx 0.06$ % $I\gamma = 0.44$ $\alpha(N) = 6.23 \times 10^{-5} 9;$
927.3 947.1 997.2	2.6 1.4 11.2	3005.7 1944.0 997.2	9/2 ⁻ ,11/2 ⁻ 11/2 ⁻ 13/2 ⁺	2078.6 997.2 0.0	(9/2,11/2) 13/2+ 7/2 ⁻	E3	0.00596 8	$\begin{aligned} &\alpha(\text{O}) = 9.70 \times 10^{-6} \ 14; \\ &\alpha(\text{P}) = 6.63 \times 10^{-7} \ 9 \\ &\alpha(\text{K}) = 0.00912 \ 13; \\ &\alpha(\text{L}) = 0.001251 \ 18; \\ &\alpha(\text{M}) = 0.000270 \ 4 \\ &\% \text{I}\gamma = 0.26 \\ &\% \text{I}\gamma = 0.14 \\ &\% \text{I}\gamma = 1.1 \\ &\alpha(\text{K}) = 0.00488 \ 7; \ \alpha(\text{L}) = 0.000838 \end{aligned}$
								12; $\alpha(M)=0.0001856\ 26$ $\alpha(N)=4.25\times10^{-5}\ 6;$ $\alpha(O)=6.40\times10^{-6}\ 9;$ $\alpha(D)=0.25\times10^{-7}\ 5;$
1027.3 1116.3 1125.7 1260.7 1362.5	2.4 1.7 ≈0.8 ≈3.1 1.5	2971.4 3194.9 3204.6 3204.6 3005.7	9/2 ⁻ ,11/2 ⁻ (9/2,11/2,13/2) 9/2 ⁻ ,11/2 ⁻ 9/2 ⁻ ,11/2 ⁻ 9/2 ⁻ ,11/2 ⁻	1944.0 2078.6 2078.6 1944.0 1642.9	11/2 ⁻ (9/2,11/2) (9/2,11/2) 11/2 ⁻ 9/2 ⁺			$\alpha(P)=3.56 \times 10^{-7} 5$ %I $\gamma=0.24$ %I $\gamma=0.17$ %I $\gamma\approx0.08$ %I $\gamma\approx0.31$ %I $\gamma=0.15$
1388.8	≈1.6	2386.3	(13/2) ⁻	997.2	13/2+	E1	7.56×10 ⁻⁴ 11	$\% I\gamma \approx 0.16$ $\% I\gamma \approx 0.16$ $\alpha(N) = 3.44 \times 10^{-6} 5;$ $\alpha(O) = 5.34 \times 10^{-7} 7;$ $\alpha(P) = 3.65 \times 10^{-8} 5;$ $\alpha(IPF) = 0.0001264 18;$ $\alpha(K) = 0.000541 8;$ $\alpha(L) = 6.98 \times 10^{-5} 10;$ $\alpha(M) = 1.496 \times 10^{-5} 21$
1397.3	791	1397.3	9/2-	0.0	7/2-	M1	2.12×10 ⁻³ 3	$ \begin{array}{l} & & \alpha(\mathbf{n}) & (\mathbf{n}) & (\mathbf{n}) & (\mathbf{n}) & (\mathbf{n}) \\ & & & \alpha(\mathbf{k}) = 0.001773 \ 25; \\ & & \alpha(\mathbf{L}) = 0.0002379 \ 33; \\ & & \alpha(\mathbf{M}) = 5.13 \times 10^{-5} \ 7 \\ & & \alpha(\mathbf{M}) = 1.181 \times 10^{-5} \ 17; \\ & & \alpha(\mathbf{O}) = 1.843 \times 10^{-6} \ 26; \\ & & \alpha(\mathbf{P}) = 1.274 \times 10^{-7} \ 18; \\ & & \alpha(\mathbf{IPF}) = 4.78 \times 10^{-5} \ 7 \end{array} $
1407.5 1574.2	1.3 3.2	3204.6 2971.4	9/2 ⁻ ,11/2 ⁻ 9/2 ⁻ ,11/2 ⁻ 9/2 ⁻ ,11/2 ⁻	1797.7 1397.3	9/2 ⁻ 9/2 ⁻			%Iγ=0.13 %Iγ=0.32 % Iv=0.0
1628.3	≈9 <0.5	1628.3	7/2 ⁺ 7/2 ⁺	0.0	7/2 ⁻ 7/2 ⁻	E1	7.81×10 ⁻⁴ 11	$\%_{1\gamma} \approx 0.9$ $\%_{1\gamma} < 0.05$ $\alpha(K) = 0.000414 6;$ $\alpha(L) = 5.31 \times 10^{-5} 7;$ $\alpha(M) = 1.138 \times 10^{-5} 16$ $\alpha(N) = 2.61 \times 10^{-6} 4;$ $\alpha(O) = 4.07 \times 10^{-7} 6;$ $\alpha(P) = 2.79 \times 10^{-8} 4;$ $\alpha(PF) = 0.000300 4$
1642.7	9.2	1642.9	9/2+	0.0	7/2-	E1	7.85×10 ⁻⁴ 11	$%I\gamma = 0.92$ $\alpha(K) = 0.000408 \ 6;$

Continued on next page (footnotes at end of table)

¹⁴⁷Tb ε decay (1.83 min) 1991MeZX (continued) $\gamma(^{147}\text{Gd})$ (continued) α^{\ddagger} $I_{\gamma}^{\#}$ Mult.[†] Eγ E_i(level) J_i^{π} \mathbf{E}_{f} J_f^{π} Comments $\alpha(L)=5.23\times10^{-5}$ 7; $\alpha(M)=1.121\times10^{-5}$ 16 $\alpha(N)=2.57\times10^{-6}$ 4; $\alpha(O)=4.01\times10^{-7}$ 6; $\alpha(P)=2.75\times10^{-8}$ 4; $\alpha(IPF)=0.000311$ 4 $\% I_{\gamma} = 14.9$ $0.0 \ 7/2^{-}$ 0.00123 16 1798.2 149 1797.7 $9/2^{-}$ M1+E2 $\alpha(K)=0.00087 \ 13; \ \alpha(L)=0.000116 \ 16;$ $\alpha(M)=2.5\times10^{-5} 4$ α (N)=5.8×10⁻⁶ 8; α (O)=9.0×10⁻⁷ 13; α (P)=6.1×10⁻⁸ 10; α (IPF)=0.000208 14 1807.1 2.4 3204.6 9/2-,11/2-1397.3 9/2-%Iγ=0.24 1.02×10⁻³ 1 0.0 7/2-E2 %Iγ=0.73 1944.1 7.3 1944.0 $11/2^{-}$ $\alpha(K)=0.000645 \ 9; \ \alpha(L)=8.58\times 10^{-5} \ 12;$ $\alpha(M)=1.847\times10^{-5}\ 26$ $\alpha(N)=4.25\times10^{-6} 6$; $\alpha(O)=6.60\times10^{-7} 9$; $\alpha(P)=4.47\times10^{-8}$ 6; $\alpha(IPF)=0.000261$ 4 2078.4 6.2 2078.6 (9/2, 11/2)0.0 7/2- $%I_{\gamma=0.62}$ 3872.5 13/2,11/2 997.2 13/2+ $\%I\gamma = 0.36$ 2875.2 3.6 9/2-,11/2- $%I\gamma = 0.58$ 2971.4 5.8 2971.4 0.0 7/2-9/2-,11/2-0.0 7/2- $\dot{\gamma} = 0.65$ 3005.4 3005.7 6.5 3204.6 3204.6 9/2-,11/2- $0.0 \ 7/2^{-}$ $\%I\gamma = 0.67$ 6.7 3322.2 6.7 3322.2 9/2-,11/2- $0.0 \ 7/2^{-}$ $\% I\gamma = 0.67$

[†] Adopted values.

[‡] Additional information 1.

[#] For absolute intensity per 100 decays, multiply by 0.0999.

 $^{147}_{64}\text{Gd}_{83}\text{-}4$

¹⁴⁷Tb <u>ε decay (1.83 min)</u> 1991MeZX

4