²⁵²Cf SF decay 2014Li46

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022							

Parent: ²⁵²Cf: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.645$ y 8; %SF decay=3.092 8 ²⁵²Cf-E, J^{π} , $T_{1/2}$: from 2005Ni22 (Adopted Levels).

Data set based on XUNDL files for 2014Li46 compiled by B. Singh, and 1999Sa58 compiled by J. Chenkin and B. Singh (McMaster).

2014Li46: measured Ey, Iy, $\gamma\gamma$ coin (3- and 4-fold) using the Gammasphere array of 101 Compton-suppressed Ge detectors at LBNL. Deduced levels,

1999Sa58: measured E γ , $\gamma\gamma\gamma$ using the Gammasphere array of 72 Compton suppressed Ge detectors. No I γ 's and Δ E γ 's are reported.

Other: 1995Bu38 J, π , bands, octupole correlations. Comparison with reflection asymmetric shell model calculations for the octupole band structure.

¹⁴⁷Ce Levels

E(level) [†]	\mathbf{J}^{π}	Comments
0.0	$(5/2^{-})$	
118.0	$(7/2^{-})$	
274.3		
401.5	$(9/2^+)$	
484.5 [‡]	$(13/2^+)$	
509.2 ^{<i>u</i>}		
634.9 °		
735.9 1	$(17/2^+)$	
1127.4^{\ddagger}	$(21/2^{+})$	
1127.4°	(21/2)	
1130.7 ^m	$(10/2^{-})$	
1628.2	(19/2)	
1020.2° 1712.0 [#]	(23/2)	
1713.9	(23/2)	
$1//1.1^{\circ}$	(21/2)	
$2154.2^{(0)}$	(21/2) (25/2)	
2104.2 2104.6 [#]	(23/2) $(27/2^{-})$	
2194.0	$(27/2^{-})$ $(20/2^{+})$	
2210.5°	(29/2)	
2014.4	(29/2) $(31/2^{-})$	$B(E1: 486.6x)/B(E2: 508.5x) = 0.72 \times 10^{-4} b^{-1} 8(20141.46)$
2876 1	$(31/2^{-})$ $(33/2^{+})$	$D(E1, +00.07)/D(E2, -0.0.07) = 0.72 \times 10^{-10} = 0^{-10} (201+E1+0).$
$3264.0^{\#}$	$(35/2^{-})$	$B(F1: 387.9y)/B(F2: 560.9y) = 0.95 \times 10^{-4} b^{-1} 12 (2014J) (46)$
3472	$(37/2^+)$	$D(D1, 507.7) / D(D2, 500.7) = 0.75 \times 10^{-0} 0^{-12} (2017 D T 0).$
3852#	$(39/2^{-})$	
3956 [‡]	$(37/2^{+})$ $(41/2^{+})$	
4552 [‡]	$(45/2^+)$	

[†] From least-squares fit to $E\gamma'$ s. As no uncertainties are available for the $E\gamma$ input, the E(level) values are calculated with the assumption that the uncertainties are the same (of 0.5 keV) for all the $E\gamma'$ s.

[‡] Band(A): Band based on (9/2⁺). This band and the negative-parity band based on (19/2⁻) are interpreted by 2014Li46 as an

²⁵²Cf SF decay 2014Li46 (continued)

¹⁴⁷Ce Levels (continued)

octupole structure with simplex quantum number s=+i. The two bands are connected by E1 transitions. Theoretical calculations by 2014Li46 show that the s=+i octupole band structure originates from the $i_{13/2}$ 1/2[660] neutron orbital with K=1/2.

[#] Band(B): Band based on $(19/2^{-})$. This band and the positive-parity band based on $(9/2^{+})$ are interpreted as an octupole structure with simplex quantum number s=+i. The two bands are connected by E1 transitions. See also comment for band based on $(9/2^{+})$.

 $\gamma(^{147}\text{Ce})$

[@] Band(C): Band based on (21/2).

& Band(b): Cascade 4.

^{*a*} Band(c): Cascade 5.

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α [@]
83.0	17.0 7	484.5	$(13/2^+)$	401.5	$(9/2^+)$	(E2)		4.02 11
118.0	63.5 12	118.0	$(7/2^{-})$	0.0	$(5/2^{-})$	M1+E2	1.1	0.96 2
156.2 [#]		274.3		118.0	$(7/2^{-})$			
234 9 <mark>#</mark>		509.2		274 3	() /			
241.7	1.3 <i>I</i>	1369.1	$(19/2^{-})$	1127.4	$(21/2^+)$			
251.4	77.2 14	735.9	$(17/2^+)$	484.5	$(13/2^+)$	(E2)		0.086
274.3 [#]		274.3		0.0	$(5/2^{-})$			
283.5	100	401.5	$(9/2^+)$	118.0	$(7/2^{-})$	E1		0.0144
284.0	≈ 1	2154.2	(25/2)	1870.2	(21/2)			
344.8	1.4 <i>1</i>	1713.9	$(23/2^{-})$	1369.1	$(19/2^{-})$	[E2]		0.0316
352.8 <mark>#</mark>		862.0		509.2				
360.6 [#]		634.9		274.3				
380.0	< 0.5	3852	$(39/2^{-})$	3472	$(37/2^+)$			
387.9	1.3 <i>1</i>	3264.0	$(35/2^{-})$	2876.1	$(33/2^+)$	[E1]		
391.5	53.0 10	1127.4	$(21/2^+)$	735.9	$(17/2^+)$	(E2)		0.0216
419.8	1.1 1	2614.4	(29/2)	2194.6	$(27/2^{-})$			
440.3	0.8 I	2154.2	(25/2)	1713.9	$(23/2^{-})$			
460.2	0.71	2614.4	(29/2)	2154.2	(25/2)			
480.7	<0.5	2194.6	$(2^{\prime}/2^{-})$	1713.9	$(23/2^{-})$			
483.3 486.6	1.21 252	3930 2702 1	$(41/2^{-})$ $(21/2^{-})$	3472 2216 5	$(37/2^{+})$ $(20/2^{+})$	[[]]		
400.0 500.8	3238	1628.2	(31/2) $(25/2^+)$	1127 4	(29/2) $(21/2^+)$	[E1] [E2]		0.0107
501.1	1.8 1	1870.2	(23/2)	1369.1	$(19/2^{-})$	[122]		0.0107
508.5	1.1 1	2703.1	$(31/2^{-})$	2194.6	$(27/2^{-})$	[E2]		
521.8 [#]		1156.7		634.9				
560.9	1.0 1	3264.0	$(35/2^{-})$	2703.1	$(31/2^{-})$	[E2]		
566.4	4.8 <i>3</i>	2194.6	$(27/2^{-})$	1628.2	$(25/2^+)$			
586.5 <mark>&</mark>	< 0.5	1713.9	$(23/2^{-})$	1127.4	$(21/2^+)$			
588.2	< 0.5	3852	$(39/2^{-})$	3264.0	$(35/2^{-})$			
588.3	14.2 4	2216.5	$(29/2^+)$	1628.2	$(25/2^+)$			
595.8	< 0.5	4552	$(45/2^+)$	3956	$(41/2^+)$			
596.1	2.5 2	3472	$(37/2^+)$	2876.1	$(33/2^+)$			
614.4 [#]		1771.1		1156.7				
633.2	4.5 3	1369.1	$(19/2^{-})$	735.9	$(17/2^+)$			
659.6	5.1 3	2876.1	$(33/2^+)$	2216.5	$(29/2^+)$			
/42.8	3.7 2	1870.2	(21/2)	1127.4	$(21/2^{+})$			

[†] From 2014Li4 unless mentioned otherwise (many of the γ decays also observed by 1999Sa58).

 ‡ From Adopted dataset for 147 Ce, unless when these are assumed and listed in square brackets.

[#] From 1999Sa58 only.

²⁵²Cf SF decay 2014Li46 (continued)

$\gamma(^{147}\text{Ce})$ (continued)

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

¹⁴⁷₅₈Ce₈₉

²⁵²Cf SF decay 2014Li46

¹⁴⁷₅₈Ce₈₉