147 Cs β^- decay 2005Sy01

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	N. Nica and B. Singh	NDS 181, 1 (2022)	9-Mar-2022							

Parent: ¹⁴⁷Cs: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=0.2295$ s 10; $Q(\beta^-)=8344$ 21; % β^- decay=100.0

 $^{147}\text{Cs-J}^{\pi}, T_{1/2}\text{:}$ from ^{147}Cs Adopted Levels.

¹⁴⁷Cs-Q(β^{-}): From 2021Wa16.

2005Sy01:

¹⁴⁷Cs produced via thermal neutron-induced fission of ²³⁵U target integrated in an ion source. Fission product mass separator OSIRIS. Measured E γ , I γ , $\gamma\gamma$, γ -x coin, $\beta\gamma(t)$ coin, lifetimes with a three-detector system that included a low-energy photon and X-ray (LOAX) detector and two HPGe detectors. $\beta\gamma(t)$ coin measurements involved two fast-response scintillators, a thin NE111A plastic for β particle detection, and a small BaF₂ crystal as well as a HPGe detector for γ rays.

Others: 1981ScZM, 1981ShZH, 1987ScZG.

The level scheme is from 2005Sy01 and is incomplete. 2005Sy01 compare their results to 1981ScZM and find discrepancies (see comments below).

¹⁴⁷Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		Comments
0.0	(5/2-)	0.894 s 7	$T_{1/2}$: adopted value.	
46.23 5	$(3/2^-, 5/2^-)$	0.51 ns 8	$T_{1/2}$: 1.4 ns in 1981ScZM.	
74.9? [@] 8	(5/2=)	0.27 10	T 0.1 10010 704	
85.39.5	(3/2) $(7/2^{-})$	0.37 ns 10	$T_{1/2}$: 2.1 ns in 1981ScZW.	
185.81 6	$(7/2^{-})$	1.4 115	1/2. Hom 19813cziwi.	
198.9? [@] 8				
238.80 7	(9/2-)			
279.18 9	(9/2 ⁻)			
292.10 6	(-)	0.3 ns	$T_{1/2}$: from 1981ScZM.	
319.4? 8				
359 96 12	$(9/2^+)$			
365.62 8	()/2)			
397.48 7	()			
426.10 7				
451.32 /				
487.02°				
491.12 8				
513.81 7	(_)			
544.16 8				
564.36 7				
595.72 9				
628.34 11				
642.31 14	(-)			
655.64 <i>18</i> 705 70 <i>15</i>				
716.31 10				
719.80 8				
738.16 16				
744.45 9				
787.11 10				
801.70 10				

147 Cs β^- decay 2005Sy01 (continued)

¹⁴⁷Ba Levels (continued)

E(level) [†]	E(level) [†]	E(level) [†]
921.26 <i>11</i> 930.51 <i>21</i> 1015.94 <i>8</i> 1045.60 <i>10</i>	1078.9 <i>3</i> 1090.3 <i>3</i> 1208.96 <i>18</i> 1239.53 <i>17</i>	1262.00 <i>17</i> 1326.21 <i>21</i> 1707.2 <i>3</i> 2300.2 <i>8</i> 2365.2 <i>10</i>

 † From least-squares fit to $E\gamma's$ by evaluator.

[‡] From Adopted Levels.

[#] From 2005Sy01, except where noted. Lifetime measurements from 2005Sy01 were made using Advanced Time-Delayed (ATD) $\beta\gamma\gamma$ (t) method. The values were obtained in least-square fitting procedure of the whole spectrum to a response function which was constructed by a convolution of the Gaussian prompt and an exponential decay curve.

[@] Observed in 1981ScZM but not in 2005Sy01.

							,	
Eγ	I_{γ}^{\ddagger}	E_i (level)	J_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
24.4 1	0.7 [°] 4	109.81	$(7/2^{-})$	85.39	$(5/2^{-})$			I_{γ} : $I_{\gamma}=0.2 \ I$ in 1981ScZM.
28.9 [@] e	3.5 17	74.9?		46.23	$(3/2^{-}, 5/2^{-})$, .
35.1 [@] e	3.5 17	109.81	$(7/2^{-})$	74.9?				
35.2 2	1.2 ^b 4	327.40		292.10	(_)			
39.2 1	3.7 ^b 4	85.39	(5/2 ⁻)	46.23	(3/2 ⁻ ,5/2 ⁻)	M1(+E2)	40 26	$\begin{aligned} &\alpha(\mathbf{K}) = 10.1 \ 25; \ \alpha(\mathbf{L}) = 24 \ 22; \ \alpha(\mathbf{M}) = 5.2 \ 49 \\ &\alpha(\mathbf{N}) = 1.1 \ 10; \ \alpha(\mathbf{O}) = 0.14 \ 13; \\ &\alpha(\mathbf{P}) = 6.7 \times 10^{-4} \ 18 \\ &\mathbf{I}_{\gamma}: \ \% \ \text{branching} = 1.2; \ I\gamma \ \text{deduced} \\ &\text{assuming } 85.4 \ \text{transition is } \mathbf{M}1. \\ &\text{Mult.: } \mathbf{M}1 \ \text{from } 2005 \mathrm{Sy01} \ \text{based on} \\ &\text{RUL (that excludes } \Delta \mathbf{J} \geq 2) \ \text{and} \\ &\Delta \pi = \text{no (that excludes } \mathbf{E}1); \ 2005 \mathrm{Sy01} \\ &\text{do not exclude a very small } \mathbf{E}2 \\ &\text{admixture.} \end{aligned}$
46.2 1	32 ^{<i>a</i>} 5	46.23	(3/2 ⁻ ,5/2 ⁻)	0.0	(5/2-)	M1(+E2)	21 13	 α: for pure M1. α(K)=7.74 17; α(L)=10.8 97; α(M)=2.4 22 α(N)=0.49 45; α(O)=0.063 56; α(P)=0.00045 8 I_γ: % branching=9.6; I_γ=45 4 in 1981ScZM. α(K)exp: 7.2 8 (2005Sy01) deduced from sum of coincidence spectra gated by the 541, 582, 674, 741 and 1193 transitions. Mult.: α(K)exp gives M1, E2 or M1+E2; however, pure E2 is excluded from RUL, although very small E2 admixture is possible. This excludes E1 from 1981ScZM. α: for pure M1.
63.6 [@] e	3.5 17	109.81	$(7/2^{-})$	46.23	$(3/2^-, 5/2^-)$			£
75.1 [@] e		74.9?	- • •	0.0	(5/2-)			
76.0 1	12.1 ^{<i>a</i>} 17	185.81	$(7/2^{-})$	109.81	$(7/2^{-})$			

 $\gamma(^{147}\text{Ba})$

				¹⁴⁷ C	¹⁴⁷ Cs β^- decay 2005Sy01 (continued)		continued)	
					γ (¹⁴⁷ Ba	a) (continued))	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	α^{d}	Comments
85.4 1	100 ^{<i>a</i>} 5	85.39	(5/2 ⁻)	0.0	(5/2 ⁻)	M1(+E2)	2.47 92	α(K)=1.6 3; α(L)=0.66 49; α(M)=0.14 II α(N)=0.030 22; α(O)=0.0040 28; $ α(P)=8.71\times10^{-5} 13 $ $ I_{\gamma}: %\gamma$ -branching=31.4; deduced assuming mult(39.2γ)=M1. Mult.: M1 from 1981ScZM based on K/L ratio; 2005Sy01 exclude E2 based on RUL, but do not exclude a very small E2 admixture. $ α_{1} = α_{1} + α_{2} + α_{$
93.0 [@] e	10 <i>5</i>	292.10	(_)	198.9?				Mult.: E2 from K/L ratios from 1981ScZM; however, γ not listed by 2005Sy01 (possible contamination from ¹⁴⁷ La), so mult not adopted here.
100.4 <i>I</i> 109.8 <i>I</i>	3.7 ^b 8 82.6 ^a 19	185.81 109.81	(7/2 ⁻) (7/2 ⁻)	85.39 0.0	(5/2 ⁻) (5/2 ⁻)	M1+E2	1.07 32	$\alpha(K)=0.78 \ 14; \ \alpha(L)=0.23 \ 15; \ \alpha(M)=0.049 \ 32 \ \alpha(N)=0.0103 \ 65; \ \alpha(O)=0.00142 \ 83; \ \alpha(P)=4.27\times10^{-5} \ 6 \ I_{\gamma}: \ I_{\gamma}=18 \ 2 \ in \ 1981ScZM.$ Mult.: M1 reported in $1981ScZM$ but $I(\gamma+ce)$ reported in that paper was calculated with α for E2. K/L ratio in $1987ScZG$ agrees with E2+M1.
116.4 <i>1</i>	2.0 ^a 4	513.81	(-)	397.48	(-)			1907SELO agrees with E2+1WIT.
123.9 <i>1</i>	2.1 ^{<i>a</i>} 4	451.32		327.40		_		
129.0 <i>I</i>	3.4° 9	238.80	(9/2 ⁻)	109.81	(1/2-)	D		
134.6 <i>I</i>	3.00 8	462.08		327.40				
139.6 <i>1</i> 140.5 [@] <i>e</i>	3.1 ⁰ 7 31 17	185.81 327.40	(7/2 ⁻)	46.23 185.81	(3/2 ⁻ ,5/2 ⁻) (7/2 ⁻)			Mult.: M1 from 1981ScZM, E2 from 1987ScZG (both from K/L ratios); however, γ not listed by 2005Sy01 (possible contamination from ¹⁴⁷ La) so mult not adopted here.
153.4 <i>I</i>	2.6 ^{<i>c</i>} 4	238.80	(9/2 ⁻)	85.39	(5/2 ⁻)	E2	0.428	$\alpha(\mathbf{K})=0.315 \ 5; \ \alpha(\mathbf{L})=0.0892 \ 13; \\ \alpha(\mathbf{M})=0.0192 \ 3 \\ \alpha(\mathbf{N})=0.00402 \ 6; \ \alpha(\mathbf{O})=0.000549 \ 8; \\ \alpha(\mathbf{P})=1.584 \times 10^{-5} \ 23$
169.4 <i>1</i>	6.8 ^c 18	279.18	(9/2 ⁻)	109.81	(7/2 ⁻)	M1+E2	0.26 4	$\alpha(K)=0.211 \ 19; \ \alpha(L)=0.043 \ 17;$ $\alpha(M)=0.0090 \ 38$ $\alpha(N)=0.00191 \ 77; \ \alpha(O)=2.71\times10^{-4} \ 97;$ $\alpha(P)=1.22\times10^{-5} \ 5$
174.1 2	5.1 <mark>b</mark> 9	359.96	$(9/2^+)$	185.81	$(7/2^{-})$	D		
179.9 2	2.9 <mark>b</mark> 8	365.62	(_)	185.81	$(7/2^{-})$			
180.1 2	7.2 ^a 7	642.31	(¯)	462.08	<1 /			
184.1 2	0.7 <mark>b</mark> 2	544.16		359.96	$(9/2^+)$			
185.8 <i>1</i>	36.7 [°] 12	185.81	(7/2 ⁻)	0.0	(5/2 ⁻)	M1,E2	0.198 24	$\alpha(K)=0.160 \ 11; \ \alpha(L)=0.030 \ 11;$ $\alpha(M)=0.0064 \ 24$ $\alpha(N)=0.00136 \ 48; \ \alpha(O)=1.95\times10^{-4} \ 60;$ $\alpha(P)=9.3\times10^{-6} \ 6$ Mult.: from K/L ratio in 1981ScZM.

Continued on next page (footnotes at end of table)

				147	$\operatorname{Cs}\beta^-$ decay	2005Sy01	(continued)					
	$\gamma(^{147}\text{Ba})$ (continued)											
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	$\frac{\mathbf{J}_{i}^{\pi}}{(-)}$	$\frac{E_f}{227.40}$	J_f^{π}	Mult. [#]	ad	Comments				
180.4 <i>I</i> 198.9 [@] <i>e</i>	38.0 7	515.81 198.9?	()	0.0	(5/2 ⁻)			α (K)= 0.0293; α (L)=0.00380; α (M)=0.00077; α (N+)=0.00021 Mult.: from K/L ratio, E1 from 1981ScZM but M1,E2 from 1987ScZG; since 2005Sy01 do not list this relatively intense γ (because of possible contamination from ¹⁴⁷ L a), no mult is adopted here				
204.4 2 216.8 <i>1</i> 221.7 <i>1</i>	$1.0^{a} 2$ $2.5^{c} 2$ $11.1^{a} 18$	564.36 544.16 513.81	(_)	359.96 327.40 292.10	(9/2 ⁺)			La), no muit is adopted here.				
238.8 1	3.9 ^c 6	238.80	(9/2 ⁻)	0.0	(5/2 ⁻)	(E2)	0.0949	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.0755 \ 11; \ \alpha(\mathbf{L}) = 0.01542 \ 22; \\ &\alpha(\mathbf{M}) = 0.00328 \ 5 \\ &\alpha(\mathbf{N}) = 0.000691 \ 10; \ \alpha(\mathbf{O}) = 9.77 \times 10^{-5} \\ &14; \ \alpha(\mathbf{P}) = 4.13 \times 10^{-6} \ 6 \end{aligned} $				
241.9 2 245.9 <i>I</i>	12.3^{b} 12 86 ^{<i>a</i>} 6	327.40 292.10	(~)	85.39 46.23	(5/2 ⁻) (3/2 ⁻ ,5/2 ⁻)	M1+E2	0.0841 24	α(K)=0.0695 13; α(L)=0.0115 23; α(M)=0.0024 6 α(N)=0.00052 11; α(O)=7.5×10-5 13; α(P)=4.2×10-6 5 α(exp): 0.08 2 from intensity balances (2005Sy01). Mult.: M1+E2 from 1981ScZM; M1, E2, or M1+E2 2005Sy01, α(exp); E1 from 1987ScZG (1981ScZM and 1987ScZG from K/L ratios).				
250.1 <i>3</i> 255.8 <i>1</i> 265.0 <i>1</i> 265.6 <i>2</i> 276.1 [@] <i>e</i>	7.7 ^b 20 1.8 ^c 5 8.7 ^a 17 7.0 ^c 14 4 2	359.96 365.62 544.16 451.32 595.72	(9/2 ⁺) (⁻)	109.81 109.81 279.18 185.81 319.4?	(7/2 ⁻) (7/2 ⁻) (9/2 ⁻) (7/2 ⁻)	D						
280.2 2	6.5 ^b 8	365.62	(¯)	85.39	(5/2 ⁻)	M1,E2 ^{&}	0.0571 12	$\alpha(\mathbf{K})=0.0476\ 23;\ \alpha(\mathbf{L})=0.0075\ 10;\alpha(\mathbf{M})=0.00157\ 23\alpha(\mathbf{N})=0.00034\ 5;\ \alpha(\mathbf{O})=5.0\times10^{-5}\ 5;\alpha(\mathbf{P})=2\ 9\times10^{-6}\ 4$				
281.2 <i>1</i> 292.0 [@] <i>e</i> 293.1 <i>1</i> 294.7 <i>3</i> 303.6 2 305.4 2	19.5 ^c 24 17 9 1.7 ^b 8 1.4 ^c 4 1.3 ^c 4 16.8 ^b 9	327.40 292.10 744.45 587.00 595.72 491.12	(~)	46.23 0.0 451.32 292.10 292.10 185.81	(3/2 ⁻ ,5/2 ⁻) (5/2 ⁻) (⁻) (⁻) (7/2 ⁻)							
312.2 <i>I</i> 316.3 2 319.3 [@] e	31 ^a 3 6.5 ^a 21 28 14	397.48 426.10 319.4?	(¯)	85.39 109.81 0.0	$(5/2^{-})$ $(7/2^{-})$ $(5/2^{-})$			E_{γ} : possible contaminant from ¹⁴⁷ La in				
319.4 <i>1</i>	25.9 ^b 15	365.62	(_)	46.23	(3/2 ⁻ ,5/2 ⁻)			2005Sy01 confirm the tentative placement of 1981ScZM.				
325.6 <i>3</i> 327.4 <i>2</i>	7.8 ^a 8 51 ^b 10	564.36 327.40		238.80 0.0	(9/2 ⁻) (5/2 ⁻)			2005Sy01 confirm the tentative				
327.8 2	4.3 ^b 12	513.81	(_)	185.81	(7/2 ⁻)	M1+E2 ^{&}	0.0363 23	placement of 1981ScZM. $\alpha(K)=0.031 \ 3; \ \alpha(L)=0.0046 \ 3;$				

Continued on next page (footnotes at end of table)

				147 Cs β^- decay 2005Sy01 (continued)				
					γ (¹⁴⁷ E	a) (continued	<u>1)</u>	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${\sf J}_f^\pi$	Mult. [#]	α^{d}	Comments
								α (M)=0.00096 8 α (N)=0.000205 14; α (O)=3.05×10 ⁻⁵ 12; α (P)=1.9×10 ⁻⁶ 3
336.3 <i>3</i>	0.7 <mark>b</mark> 5	628.34		292.10	(_)			
340.7 1	8.1 ^b 3	426.10		85.39	$(5/2^{-})$			
341.5 2	5.1 [°] 10	451.32		109.81	$(7/2^{-})$			I_{γ} : $I_{\gamma}=17 9$ in 1981ScZM.
350.3 2	7.3 ^b 8	642.31	(⁻)	292.10	(~)	M1+E2&	0.0301 24	$\alpha(K)=0.0254 \ 25; \ \alpha(L)=0.00376 \ 15; \alpha(M)=0.00078 \ 4 \alpha(N)=0.000167 \ 7; \ \alpha(O)=2.50\times10^{-5} \ 5; \alpha(P)=1.57\times10^{-6} \ 25$
351.2 <i>I</i>	64 ^{<i>a</i>} 3	397.48	(⁻)	46.23	(3/2 ⁻ ,5/2 ⁻)	M1+E2 ^{&}	0.0299 24	$\alpha(K)=0.0252 \ 25; \ \alpha(L)=0.00373 \ 14; \alpha(M)=0.00078 \ 4 \alpha(N)=0.000166 \ 7; \ \alpha(O)=2.48\times10^{-5} \ 5; \alpha(P)=1.56\times10^{-6} \ 25$
352.3 1	4.3 ^c 11	462.08		109.81	$(7/2^{-})$			
359.2 [@] e	7	359.96	$(9/2^+)$	0.0	(5/2 ⁻)			
365.6 [@] e	35 4	365.62	(_)	0.0	(5/2 ⁻)			
365.9 1	21.2 ^b 15	451.32		85.39	(5/2 ⁻)			
377.5 [@] e	4 2	487.0?		109.81	$(7/2^{-})$			
378.2 1	7.8 <mark>b</mark> 8	738.16		359.96	$(9/2^+)$			
381.3 2	4.7 [°] 10	491.12		109.81	$(7/2^{-})$			
397.4 2	3.4^{a} 9	397.48	(_)	0.0	$(5/2^{-})$			
405.8 1	11.2 ⁰ 10	491.12		85.39	$(5/2^{-})$			
409.5 ^{@e}	42	595.72		185.81	$(7/2^{-})$			
424.3 2	1.4° 3	716.31		292.10	(-)			
426.1 1	7.3ª 12	426.10		0.0	(5/2)			
434.3 1	8.1° 23	544.16		109.81	$(1/2^{-})$			
444.0 1	$5 \circ \frac{b}{5}$	491.12		40.23	(3/2, 3/2)			
45462	10^{b}	744.4J 564.26		100.91	()			
45971	1.9 4 $5.6^{\circ} 9$	787 11		327.40	(7/2)			
462.1 1	42 ^{<i>a</i>} 6	462.08		0.0	$(5/2^{-})$			
469.8 <i>3</i>	5.4 ^a 5	655.64		185.81	$(7/2^{-})$			
479.0 1	6.9 [°] 7	564.36		85.39	$(5/2^{-})$			
486.8 [@] e	5.0 25	487.0?		0.0	$(5/2^{-})$			
501.5 5	4.9 ⁶ 8	587.00		85.39	(5/2 ⁻)			
519.9 2	4.7 [°] 10	705.70		185.81	$(7/2^{-})$			
540.8 1	$21^{\circ}3$	587.00		46.23	(3/2,5/2)			
545.8 3	3.5° 3	655.64		109.81	$(7/2^{-})$			
549.2 2	$7.2^{\circ} 18$	595.72 642.21	(-)	40.23	(3/2, 3/2)			
557.03 56431	5.5° 5 $5 4^{a}$ 4	042.31 564 36	()	85.39 0.0	(3/2) $(5/2^{-})$			
570.3.3	$\sqrt{\frac{b}{4}}$	655.64		85 30	$(5/2^{-})$			
582.1 1	19 ^C 3	628.34		46.23	$(3/2^{-}, 5/2^{-})$			
587.0 1	14 ^{<i>a</i>} 3	587.00		0.0	$(5/2^{-})$			
593.9 <i>1</i>	4.0 ^C 4	921.26		327.40	· • •			
595.8 <i>1</i>	13.6 ^{<i>a</i>} 17	595.72		0.0	$(5/2^{-})$			I_{γ} : I_{γ} =59 7 in 1981ScZM.
601.3 5	6.0 ^b 21	787.11		185.81	$(7/2^{-})$			
609.9 2	1.6 ⁰ 4	719.80		109.81	$(7/2^{-})$			

Continued on next page (footnotes at end of table)

	¹⁴⁷ Cs β^- decay 2005Sy01 (continued)											
	γ ⁽¹⁴⁷ Ba) (continued)											
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	
620.3 2	3.0 [°] 6	705.70		85.39	(5/2-)	801.7 <i>1</i>	7.9 ^a 17	801.70	_	0.0	(5/2 ⁻)	
629.0 2	4.7 [°] 15	921.26		292.10	(_)	820.7 2	2.1 ^b 6	930.51		109.81	$(7/2^{-})$	
630.9 <i>1</i>	8.4 [°] 6	716.31		85.39	$(5/2^{-})$	841.8 <i>3</i>	5.0 [°] 5	1239.53		397.48	(_)	
634.4 <i>1</i>	5.5 <mark>6</mark> 9	719.80		85.39	(5/2-)	916.7 4	2.3 ^b 4	1208.96		292.10	(_)	
663.8 2	1.9 <mark>b</mark> 4	773.61		109.81	$(7/2^{-})$	930.5 1	5.6 ^c 17	1015.94		85.39	$(5/2^{-})$	
673.6 <i>1</i>	3.3 [°] 6	719.80		46.23	$(3/2^-, 5/2^-)$	947.5 <i>5</i>	2.5 [°] 5	1239.53		292.10	(_)	
691.9 4	2.1 <mark>b</mark> 5	801.70		109.81	$(7/2^{-})$	969.6 4	2.7 <mark>b</mark> 6	1262.00		292.10	(_)	
698.1 2	11.2 <mark>b</mark> 11	744.45		46.23	(3/2-,5/2-)	1015.9 <i>3</i>	6.4 ^{<i>a</i>} 12	1015.94		0.0	(5/2-)	
701.8 5	2.8 <mark>b</mark> 4	787.11		85.39	$(5/2^{-})$	1045.6 2	4.7 ^a 11	1045.60		0.0	$(5/2^{-})$	
718.2 <i>1</i>	5.1 ^a 10	1045.60		327.40		1140.4 2	7.0 [°] 5	1326.21		185.81	$(7/2^{-})$	
723.9 <i>1</i>	2.1 ^c 4	1015.94		292.10	(_)	1176.7 2	6.9 ^c 13	1262.00		85.39	$(5/2^{-})$	
740.9 2	6.6 [°] 5	787.11		46.23	$(3/2^-, 5/2^-)$	1193.4 2	9.1 ^c 14	1239.53		46.23	$(3/2^{-}, 5/2^{-})$)
770.8 4	2.3 ^a 4	1262.00		491.12		1209.0 2	2.9 ^a 8	1208.96		0.0	$(5/2^{-})$	
773.6 2	3.4 ^a 7	773.61		0.0	$(5/2^{-})$	1415.1 <i>3</i>	3.7 [°] 5	1707.2		292.10	(_)	
786.8 <i>3</i>	2.5 [°] 12	1078.9		292.10	(_)	2114.4 8	7.9 <mark>6</mark> 17	2300.2		185.81	$(7/2^{-})$	
798.2 <i>3</i>	3.1 ^c 10	1090.3		292.10	(_)	2279.8 10	4.6 <mark>b</mark> 10	2365.2		85.39	$(5/2^{-})$	

[†] From 2005Sy01, except where noted. [‡] Relative intensities from 2005Sy01.

[#] From Adopted Levels, Gammas dataset.

[#] From Adopted Levels, Gammas dataset.
[@] Observed in 1981ScZM but not in 2005Sy01.
[&] From 1981ScZM and 1987ScZG based on K/L ratios.
^a From γ-ray singles spectra (2005Sy01).
^b From γγ data (2005Sy01).
^c Average value of γ intensities from γ-ray singles and γγ data.
^d Additional information 1.
^e Placement of transition in the level scheme is uncertain.

¹⁴⁷Cs β^- decay 2005Sy01

¹⁴⁷₅₆Ba₉₁

9

