¹⁴⁶Tb IT decay 1989Br22,1984Br07,2011Ko08

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136,163 (2016)	14-Jul-2016			

Parent: ¹⁴⁶Tb: E=779.57+x *16*; $J^{\pi}=10^+$; $T_{1/2}=1.20$ ms *3*; %IT decay=100 1989Br22,1984Br07: ¹⁴⁶Tb IT decay [from ⁸⁹Y(⁶⁰Ni,2pn γ), E=245 MeV]; measured E γ , I γ , $\gamma\gamma$, KX γ coin, $T_{1/2}$. ¹⁴⁶Tb; deduced levels, J^{π} , isomer, configurations. Argonne Superconducting Linac, Ge detectors.

2011Ko08: ¹⁴⁶Tb IT decay [from ¹¹²Sn(⁴⁰Ar,3p3n γ), E=232 MeV]; measured E γ , I γ , ce, $\gamma\gamma$, ce γ coin, T_{1/2}. ¹⁴⁶Tb; deduced levels, $\alpha(\exp)$, δ , J^{π} , configurations. OSIRIS-II array, electron spectrometer.

Other: 1981StZO.

The ¹⁴⁶Tb IT decay level scheme is the same as proposed in 1989Br22 and 2011Ko08.

¹⁴⁶Tb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0+x	5-		Additional information 1.
			configuration: $\pi h_{11/2} v d_{3/2}^{-1}$, probable admixture of $\pi h_{11/2} v s_{1/2}^{-1}$ (2011Ko08).
			E(level): the value is not known exactly relative to ground state (150 keV 110 higher g.s.
			(from systematics, 2012Au07)).
18.73+x <i>13</i>	(5 ⁻ ,6 ⁻)		configuration: $\pi h_{11/2} v s_{1/2}^{-1}$ (2011Ko08,1989Br22).
156.70+x 10	(6 ⁻)		configuration: $\pi h_{11/2} \nu d_{5/2}^{-1}$ (2011Ko08).
361.87+x <i>13</i>	(7^{-})		configuration: $\pi h_{11/2} v d_{3/2}^{2/1}$ (2011Ko08,1989Br22).
779.57+x 16	(10^{+})	1.20 ms 3	E(level): the value is not known exactly relative to ground state (930 keV 110 higher g.s.
			(from systematics, 2012Au07)).
			configuration: $\pi h_{11/2} \nu h_{11/2}^{-1}$ (1989Br22).
			$T_{1/2}$: weighted average of 1.18 ms 2 (1989Br22) and 1.24 ms 3 (2011Ko08).

[†] From 'Adopted Levels'.

[‡] From systematics of N=81 isotones (2011Ko08,1989Br22).

						γ ⁽¹⁴⁶ Tb)			
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α [@]	Comments
(18.7 5)	2.1 1	18.73+x	(5 ⁻ ,6 ⁻)	0.0+x	5-	[M1] [#]		48 4	α (L)=37 4; α (M)=8.2 7 α (N)=1.89 16; α (O)=0.290 25; α (P)=0.0189 16 I _y : from intensity balance at the level and [M1] mult.
138.0 5	1.5 8	156.70+x	(6 ⁻)	18.73+x	(5 ⁻ ,6 ⁻)	M1 [#]		0.878 16	$\begin{aligned} &\alpha(\mathbf{K}) = 0.741 \ 13; \ \alpha(\mathbf{L}) = 0.1075 \\ &19; \ \alpha(\mathbf{M}) = 0.0235 \ 4 \\ &\alpha(\mathbf{N}) = 0.00543 \ 10; \\ &\alpha(\mathbf{O}) = 0.000836 \ 15; \\ &\alpha(\mathbf{P}) = 5.51 \times 10^{-5} \ 10 \end{aligned}$
156.7 2	5.0 8	156.70+x	(6 ⁻)	0.0+x	5-	M1 [#]		0.614	α (K)=0.518 8; α (L)=0.0751 11; α (M)=0.01640 24 α (N)=0.00379 6; α (O)=0.000584 9; α (P)=3.85×10 ⁻⁵ 6
205.2 2	7.6 9	361.87+x	(7 ⁻)	156.70+x	(6 ⁻)	M1 [#]		0.291	$\begin{aligned} &\alpha(K) = 0.245 \ 4; \ \alpha(L) = 0.0354 \ 5; \\ &\alpha(M) = 0.00772 \ 11 \\ &\alpha(N) = 0.00178 \ 3; \ \alpha(O) = 0.000275 \\ &4; \ \alpha(P) = 1.82 \times 10^{-5} \ 3 \end{aligned}$
343.1 <i>1</i>	91 4	361.87+x	(7-)	18.73+x	(5 ⁻ ,6 ⁻)	E2(+M1) [‡]	1.6 6	0.050 7	α (K)exp=0.040 8;

Continued on next page (footnotes at end of table)

			1467	b IT decay	19	89Br22,	1984Br07,2	2011Ko08 (continued)
					2	γ(¹⁴⁶ Tb)	(continued))
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.	α [@]	Comments
								$\begin{array}{c} \alpha(\text{L+})\exp=0.008\ 2;\ \text{K/(L+M+N)+O+P=5.0}\ 16\\ (2011\text{Ko08})\\ \alpha(\text{K})=0.040\ 7;\ \alpha(\text{L})=0.0077\ 4;\ \alpha(\text{M})=0.00173\ 6\\ \alpha(\text{N})=0.000395\ 15;\ \alpha(\text{O})=5.8\times10^{-5}\ 4;\\ \alpha(\text{P})=2.8\times10^{-6}\ 6\\ \text{Mult.: experimental data do not exclude the pure}\\ \text{E2 mult.}\\ \delta:\ \text{calculation with BriccMixing from }\alpha(\text{exp})'\text{s}\\ (2011\text{Ko08}).\ \delta^{2}=2.8\times\infty-19\ (2011\text{Ko08}). \end{array}$
417.7 1	100.0 <i>30</i>	779.57+x	(10 ⁺)	361.87+x	(7 ⁻)	E3 [‡]	0.0757	$\begin{array}{l} \alpha(\rm K) \exp = 0.047 \ 9; \ \alpha(\rm L+) \exp = 0.026 \ 7; \\ \rm K/(\rm L+M+N) + O + P = 1.9 \ 5 \ (2011 \rm Ko08) \\ \alpha(\rm K) = 0.0513 \ 8; \ \alpha(\rm L) = 0.0188 \ 3; \ \alpha(\rm M) = 0.00442 \ 7 \\ \alpha(\rm N) = 0.001005 \ 15; \ \alpha(\rm O) = 0.0001387 \ 20; \\ \alpha(\rm P) = 3.67 \times 10^{-6} \ 6 \end{array}$

[†] From 1989Br22.
[‡] From a_{exp} in ce measurements (2011Ko08).
[#] From 1989Br22: assumed transition multipolarities for levels of multiplet structure and excellence intensity balance throughout the scheme.
[@] Additional information 2.
[&] Absolute intensity per 100 decays.

 $^{146}_{65}{
m Tb}_{81}$