¹⁴⁶Ce β⁻ decay 1968Ho16,1980Ya07,1997Gr09

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016						

Parent: ¹⁴⁶Ce: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=13.49 \text{ min } 16$; $Q(\beta^-)=1050 \ 30$; $\%\beta^-$ decay=100.0 ¹⁴⁶Ce- $T_{1/2}$ from 'Adopted Levels'.

1967Ho19,1968Ho16,1964Da06: ¹⁴⁶Ce β^- decay [from ²³⁵U(n,F) product]; measured E γ , I γ , ce, (X-ray) γ , (ce) γ coin. ¹⁴⁶Pr; deduced levels, J^{π} , α (exp), log *ft*.

1980Ya07: ¹⁴⁶Ce β^- decay [from ²³⁵U(n,F) product]; measured E γ , I γ , β^- , $\gamma\gamma$, $\beta\gamma$ coin., T_{1/2}. ¹⁴⁶Pr; deduced levels, J^{π} , log *ft*, Q_{β}.

1983Ge11: ¹⁴⁶Ce β^- decay [from ²⁵²Cf(SF) product]; measured E γ , I γ . ¹⁴⁶Pr; deduced γ ray absolute and relative intensities. 1997Gr09: ¹⁴⁶Ce β^- decay [from ²⁵²Cf(SF) product]; measured E γ , I γ . ¹⁴⁶Pr; deduced β^- intensity populations. He gas-jet

arrangement, mass-separator, total absorption spectrometer system.

Others: 1977Bj02, 1979Bo26, 1984So18, 1972Oh08.

Decay scheme is that from 1968Ho16, 1980Ya07 and 1997Gr09.

¹⁴⁶Pr Levels

E(level) [†]	Jπ‡
0.0	(2^{-})
12.221 19	$(1,2,3)^{-}$
35.05 <i>3</i>	$1^{-}, 2^{-}$
87.22 4	1-,2-
100.88 5	$1^+, 2^+$
133.55 <i>3</i>	1-,2-
141.28 4	$1^{-}, 2^{-}$
351.78 <i>3</i>	1+
502.95 5	1^{+}
878.60 11	1^{+}

[†] From a least-squares fit to $E\gamma$'s, normalized $\chi^2=0.9$.

[‡] From 'Adopted Levels'.

β^- radiations

 β and $\beta\gamma$ reveal the β components: 830 keV 50, 600 keV 50 (from coin with 317 γ and 218 γ 1980Ya07), 748 keV 109 (1981Eb01), 750 keV 80 (1967Ho19).

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(1.7 \times 10^2 \ 3)$	878.60	0.199 13	4.7 3	av Eβ=46.3 88
$(5.5 \times 10^2 \ 3)$	502 95	3 47 9	5 07 9	$I\beta^-: 0.163 \ (1997Gr09).$ av $F\beta=169 \ II$
(5.5×10 5)	502.75	5.77 2	5.07 2	$I\beta^{-1}: 5.89 (1997 \text{Gr} 09).$
750 8	351.78	94.3 24	4.00 7	av E β =224 12
				$I\beta^-: 93.36 (1997Gr09).$ E β from 1967Ho19.
$(9.1 \times 10^2 \ 3)$	141.28	0.76 22	6.50 14	av E β =306 12
$(9.2 \times 10^2 \ 3)$	133.55	1.6 4	6.19 12	av E <i>β</i> =309 <i>12</i>
$(9.5 \times 10^2 \ 3)$	100.88	0.36 9	6.89 12	av E <i>β</i> =322 <i>12</i>
$(9.6 \times 10^2 \ 3)$	87.22	2.0 4	6.17 10	av E β =327 12

Continued on next page (footnotes at end of table)

¹⁴⁶Ce β⁻ decay **1968Ho16,1980Ya07,1997Gr09** (continued)

β^- radiations (continued)

[†] From the balance of intensities at the levels (multipolarities are from 1968Ho16). I β 's to low-energy levels with E<100 keV

equal 2.6% 17 (1997Gr09), no β^- feedings to the 87-, 35-, 12-keV levels and g.s. were determined in 1980Ya07.

[‡] Absolute intensity per 100 decays.

Iy normalization: from I(316.7 γ)=55.3% 13 (weighted average of values of 55.0% 15 (1983Ge11) and 56.2% 30 (1984So18)) assuming no feeding to g.s.

E_{γ}^{\dagger}	I_{γ} ‡ <i>h</i>	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.@	δ&	α ^g	$I_{(\gamma+ce)}^{\#i}$	Comments
12.23 2	0.31 ^d 2	12.221	(1,2,3) ⁻	0.0	(2 ⁻)	M1		94.1	21 12	ce(L)/(γ+ce)=0.781 8; ce(M)/(γ+ce)=0.165 4 ce(N)/(γ+ce)=0.0369 8; ce(O)/(γ+ce)=0.00591 13; ce(P)/(γ+ce)=0.000429 9 α (L)=74.3 11; α (M)=15.70 24 α (N)=3.51 6; α (O)=0.562 9; α (P)=0.0408 6 I _γ : 0.22 12 from intensity balance; no β ⁻ feeding. α (exp): 67 38 deduced by the evaluators from I(γ+ce)=21 12; value of α is consistent with M1 mult.
22.88 5	1.4 7	35.05	1-,2-	12.221	(1,2,3) ⁻	M1		14.60	21 11	$\begin{array}{l} {\rm ce}(L)/(\gamma+{\rm ce})=0.739 \ 8; \ {\rm ce}(M)/(\gamma+{\rm ce})=0.156 \ 3\\ {\rm ce}(N)/(\gamma+{\rm ce})=0.0348 \ 8; \ {\rm ce}(O)/(\gamma+{\rm ce})=0.00559 \ 12;\\ {\rm ce}(P)/(\gamma+{\rm ce})=0.000406 \ 9\\ \alpha(L)=11.53 \ 18; \ \alpha(M)=2.43 \ 4\\ \alpha(N)=0.543 \ 9; \ \alpha(O)=0.0871 \ 14; \ \alpha(P)=0.00634 \ 10\\ {\rm I}_{\gamma}: \ {\rm from \ I}(\gamma+{\rm ce}); \ 2.0 \ 1 \ {\rm from \ 1980Ya07}.\\ \alpha({\rm exp}): \ \alpha(L){\rm exp}=9.1 \ 30, \ \alpha(M){\rm exp}=1.9 \ 7 \ ({\rm from \ L}/M=4.8 \ 1, \ \alpha(L){\rm exp}+\alpha(M){\rm exp}=11 \ 4 \ (1968{\rm Ho16})). \end{array}$
35.05 8	2.0 ^{<i>d</i>} 1	35.05	1-,2-	0.0	(2 ⁻)	M1+E2	0.87 ^{<i>a</i>} 14	59 11	118 11	ce(L)/(γ +ce)=0.77 <i>10</i> ; ce(M)/(γ +ce)=0.17 <i>4</i> ce(N)/(γ +ce)=0.037 <i>10</i> ; ce(O)/(γ +ce)=0.0051 <i>13</i> ; ce(P)/(γ +ce)=2.1×10 ⁻⁵ <i>5</i> α (L)=46 <i>9</i> ; α (M)=10.4 <i>19</i> α (N)=2.2 <i>4</i> ; α (O)=0.31 <i>6</i> ; α (P)=0.00126 <i>11</i>
52.19 <i>10</i>	1.85 ^{<i>f</i>} 4	87.22	1-,2-	35.05	1-,2-	M1		8.48		α (L)exp=1.2 3 α (K)=7.21 11; α (L)=1.007 16; α (M)=0.212 4 α (N)=0.0475 8; α (O)=0.00762 12; α (P)=0.000557 9 L: 0.94 5 from 1980Ya07.
87.19 <i>17</i>	1.24 6	87.22	1-,2-	0.0	(2 ⁻)	E2+M1	3.1 <i>13</i>	3.33 23		α (K)exp=2.1 7; α (L)exp=1.2 4 α (K)=1.77 4; α (L)=1.22 16; α (M)=0.27 4 α (N)=0.059 8: α (O)=0.0082 11: α (P)=9.4×10 ⁻⁵ 5
98.55 6	6.90 <i>14</i>	133.55	1-,2-	35.05	1-,2-	M1		1.350		$\alpha(K)=0.00000000000000000000000000000000000$
100.88 7	4.88 7	100.88	1+,2+	0.0	(2 ⁻)	(E1)		0.245		$\alpha(K)=0.208 \ 3; \ \alpha(L)=0.0294 \ 5; \ \alpha(M)=0.00616 \ 9$ $\alpha(N)=0.001355 \ 20; \ \alpha(O)=0.000209 \ 3;$ $\alpha(P)=1.238 \times 10^{-5} \ 18$

 $\boldsymbol{\omega}$

 $^{146}_{59}\mathrm{Pr}_{87}\text{-}3$

				146	$\operatorname{Ce}\beta^{-}\operatorname{dec}$	ay 19681	Ho16,198	30Ya07,199	7Gr09 (continued)
						$\gamma(^1$	⁴⁶ Pr) (cc	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ <i>h</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [@]	δ &	α^{g}	Comments
106.17 8	1.11 5	141.28	1 ⁻ ,2 ⁻	35.05	1 ⁻ ,2 ⁻	M1		1.092	α(exp): 0.203 23 deduced by the evaluators from intensities balance at 100.88 keV level which is consistent with E1. α(K)exp=1.2 4 α(K)=0.930 14; $α(L)=0.1282 19$; $α(M)=0.0270 4α(N)=0.00604 9; α(O)=0.000972 14; α(P)=7.14 \times 10^{-5} 11$
^x 132 ^c 133.52 4	0.24 ^c 4 14.89 23	133.55	1-,2-	0.0	(2-)	M1		0.571	α (K)exp \approx 0.6; ce(L)=0.073 22; K/L=8.3 α (K)=0.486 7; α (L)=0.0668 10; α (M)=0.01407 20 α (N)=0.00315 5; α (O)=0.000507 8; α (P)=3.73×10 ⁻⁵ 6
141.29 5	6.15 8	141.28	1-,2-	0.0	(2-)	M1+E2	0.6 6	0.52 5	Iγ=8.8% 5 (1984So18). α (K)exp=0.36 10; α (L)exp=0.085 25; K/L=4.3 α (K)=0.418 7; α (L)=0.08 4; α (M)=0.018 8 α (N)=0.0040 16; α (O)=0.00060 21; α (P)=3.0×10 ⁻⁵ 3
^x 173.84 <i>15</i> 210.46 <i>6</i>	0.47 ^e 7 9.96 15	351.78	1+	141.28	1-,2-	E1		0.0329	α (K)exp=0.047 <i>15</i> α (K)=0.0282 <i>4</i> ; α (L)=0.00377 <i>6</i> ; α (M)=0.000790 <i>11</i> α (N)=0.0001751 <i>25</i> ; α (O)=2.76×10 ⁻⁵ <i>4</i> ; α (P)=1.83×10 ⁻⁶ <i>3</i> I γ =5.6% <i>6</i> (1984So18).
x216 ^c 218.23 3	0.49 ^c 4 35.3 4	351.78	1+	133.55	1-,2-	E1		0.0299	α (K)exp=0.032 <i>15</i> α (K)=0.0256 <i>4</i> ; α (L)=0.00342 <i>5</i> ; α (M)=0.000716 <i>10</i> α (N)=0.0001588 <i>23</i> ; α (O)=2.50×10 ⁻⁵ <i>4</i> ; α (P)=1.667×10 ⁻⁶ <i>24</i> I γ =22.4% 8 (1984So18).
x245.50 10 250.89 6	0.54 ^e 6 4.92 11	351.78	1+	100.88	1+,2+	M1		0.1009	α (K)exp \approx 0.1 α (K)=0.0861 <i>12</i> ; α (L)=0.01166 <i>17</i> ; α (M)=0.00245 <i>4</i>
264.56 <i>4</i>	16.58 <i>19</i>	351.78	1+	87.22	1-,2-	E1		0.0180	$\begin{aligned} \alpha(N) &= 0.000549 \ 8; \ \alpha(O) &= 8.85 \times 10^{-3} \ 13; \ \alpha(P) &= 6.57 \times 10^{-6} \ 10 \\ \alpha(K) &= xp \le 0.036 \\ \alpha(K) &= 0.01540 \ 22; \ \alpha(L) &= 0.00204 \ 3; \ \alpha(M) &= 0.000427 \ 6 \\ \alpha(N) &= 9.49 \times 10^{-5} \ 14; \ \alpha(O) &= 1.503 \times 10^{-5} \ 21; \ \alpha(P) &= 1.022 \times 10^{-6} \ 15 \end{aligned}$
316.74 <i>3</i>	100.0 11	351.78	1+	35.05	1-,2-	E1		0.01132	Iγ=8.8% 8 (1984So18). α (K)=0.00971 14; α (L)=0.001277 18; α (M)=0.000267 4 α (N)=5.94×10 ⁻⁵ 9; α (O)=9.44×10 ⁻⁶ 14; α (P)=6.53×10 ⁻⁷ 10 Iγ=56.2% 30 (1984So18), Iγ=55.0% 18 (1983Ge11). α (K)=0.00971 used for the normalization.
351.49 <i>13</i> 369.23 <i>10</i> 375 65 ^b <i>13</i>	0.61 <i>5</i> 0.36 <i>2</i> 0.220 <i>14</i>	351.78 502.95 878.60	1^+ 1^+ 1^+	0.0 133.55 502 95	(2^{-}) 1^{-},2^{-} 1 ⁺				Mult.: from ce measurement by 1968Ho16. I_{γ} : 4.1 2 in 1980Ya07.
415.71 6 x462.7 2 462.02 15	$2.45 \ 3$ $0.06^{d} \ 1$	502.95	1+	87.22	1 ⁻ ,2 ⁻				E_{γ} : not observed in 1983Ge11.
468.02 15 490.8 4	1.48 <i>2</i> 0.26 <i>2</i>	502.95 502.95	1^{+} 1 ⁺	35.05 12.221	$(1,2,3)^{-}$				I_{γ} : from 1983Ge11, ≈0.06 (1968HO16), 0.11 2 (1980Ya07).

4

From ENSDF

 $^{146}_{59}\mathrm{Pr}_{87}\text{-}4$

 $^{146}_{59}\mathrm{Pr}_{87}$ -4

$\gamma(^{146}\text{Pr})$ (continued)

E_{γ}^{\dagger}	I_{γ} ‡ <i>h</i>	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
503.00 6	1.94 <i>3</i>	502.95	1^{+}	0.0	(2^{-})	
526.83 ^b 15	0.140 17	878.60	1^{+}	351.78	1^{+}	

[†] From 1980Ya07, except as noted.

[‡] Weighted average of $I\gamma$'s from 1968Ho16, 1983Ge11 and 1980Ya07 except as noted. $I\gamma$'s are normalized to $I\gamma$ (316.7)=100.

[#] From the intensities balance at the level. [@] From $\alpha(\exp)$ (1968Ho16) which were renormalized by the evaluators to I(316.7 γ , E1)=100, $\alpha(K)$ =0.00971 (2008Ki07) except as noted.

[&] Calculated using BrIccMixing code from $\alpha(\exp)$'s except as noted.

^{*a*} Deduced by the evaluators from intensity balance at the level (no β^- feeding) using α 's for M1 and E2 from 2008Ki07.

^b Inserted by 1997Gr09 from unplaced γ 's (1980Ya07) on the basis of comparison of measured and simulated γ spectra.

^c Observed by 1983Ge11 only.

^d From 1980Ya07.

^e Weighted average of $I\gamma$'s from 1983Ge11 and 1980Ya07.

^f Weighted average of $I\gamma$'s from 1968Ho16 and 1983Ge11.

^g Additional information 1.

^h For absolute intensity per 100 decays, multiply by 0.553 13.

^{*i*} For absolute intensity per 100 decays, multiply by 0.559 *13*.

 $x \gamma$ ray not placed in level scheme.

S

¹⁴⁶Ce β^- decay 1968Ho16,1980Ya07,1997Gr09

Decay Scheme

¹⁴⁶₅₉Pr₈₇

6