¹⁴⁶Pm ε decay **1966Bu03,1968Ta09,1970Av03**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016

Parent: ¹⁴⁶Pm: E=0.0; $J^{\pi}=3^-$; $T_{1/2}=5.53$ y 5; $Q(\varepsilon)=1472$ 4; $\%\varepsilon+\%\beta^+$ decay=65.7 15

1970Av03: ¹⁴⁶Pm ε decay [from Ta,Gd(p,X), E=660 MeV]; measured E γ , I γ , ce. ¹⁴⁶Nd; deduced levels, J^{π} , log ft. 1968Ta09: ¹⁴⁶Pm ε decay [from ¹⁴⁶Nd(p,n), E=10 MeV]; measured E γ , I γ , $\gamma\gamma$ coin. ¹⁴⁶Nd; deduced levels, log ft. 1966Bu03: ¹⁴⁶Pm ε decay [from ¹⁴⁸Nd(p,3n)]; measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$, T_{1/2}. ¹⁴⁶Nd; deduced levels, J^{π} , log ft. 1974Sc06: ¹⁴⁶Pm ε decay [from ¹⁴⁶Nd(d,2n), E=12 MeV]; measured E γ . ¹⁴⁶Nd; deduced transitions. Others: 1963Pa21, 1967Bu12, 1960Fu05, 1981Or03.

Decay scheme is that from 1970Av03.

146Nd Levels

E(level)	$J^{\pi \dagger}$
0.0	0^{+}
453.83 15	2^{+}
1043.5 5	4^{+}
1189.73 24	3-

[†] From 'Adopted Levels'.

 ε, β^+ radiations

No β^+ (<0.012%) (1967Va01).

E(decay)	E(level)	$I\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(282 4)	1189.73	23.2 <i>15</i>	8.46 <i>4</i>	23.2 <i>15</i>	ε K=0.8078 8; ε L=0.1483 6; ε M+=0.04393 20
(429 4)	1043.5	0.36 9	10.68 <i>11</i>	0.36 9	ε K=0.8238 3; ε L=0.13634 22; ε M+=0.03984 8
(1018 4)	453.83	42.2 22	9.39 <i>4</i>	42.2 22	ε K=0.8394; ε L=0.12472 4; ε M+=0.03589 1

[†] For absolute intensity per 100 decays, multiply by 0.999 23.

 $\gamma(^{146}\text{Nd})$

I γ normalization: from I γ =34.6% 15 for 747.2 keV, E2 transition in the ¹⁴⁶Pm β^- decay to ¹⁴⁶Sm; weighted average of 34.7 18 (1966Bu03), 37.0 55 (1968Ta09), 33.3 35 (1970Av03) assuming I(γ +ce) 747.2, ¹⁴⁶Sm+I(γ +ce) 453.8, ¹⁴⁶Nd=100% and no β^- and (ε + β^+) feedings to ¹⁴⁶Sm(g.s.) and ¹⁴⁶Nd(g.s.), correspondingly. Other: 66.0% 13 (1997Pe22, 2012Au07). α (exp): from absolute measurements of I γ and ce (1981Or03).

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger@}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α #	Comments
146.2 13	0.22 3	1189.73	3-	1043.5 4+	[E1]	0.092 3	$\alpha(K)=0.0780\ 22;\ \alpha(L)=0.0108\ 4;\ \alpha(M)=0.00228\ 7$ $\alpha(N)=0.000504\ 15;\ \alpha(O)=7.37\times10^{-5}\ 21;$ $\alpha(P)=4.09\times10^{-6}\ 12$ $E_{\gamma}:\ from\ 1968Ta09.$
453.83 15	64.7 15	453.83	2+	0.0 0+	E2	0.01535	$\begin{aligned} &\alpha'(\text{K})\exp=0.0125\ 6;\ \alpha(\text{L})\exp=0.0022\ 1;\\ &\alpha(\text{M})\exp=0.00050\ 4\\ &\alpha(\text{K})=0.01263\ 18;\ \alpha(\text{L})=0.00214\ 3;\ \alpha(\text{M})=0.000462\ 7\\ &\alpha(\text{N})=0.0001024\ 15;\ \alpha(\text{O})=1.484\times10^{-5}\ 21;\\ &\alpha(\text{P})=7.33\times10^{-7}\ 11 \end{aligned}$

Continued on next page (footnotes at end of table)

146 Pm ε decay 1966Bu03,1968Ta09,1970Av03 (continued) γ (¹⁴⁶Nd) (continued) $I_{\nu}^{\ddagger 0}$ $\alpha^{\texttt{\#}}$ E_{γ}^{\dagger} E_i (level) $\frac{\mathbf{J}_i^{\pi}}{\mathbf{4}^+}$ $\frac{\mathrm{E}_f}{453.83} \frac{\mathrm{J}_f^{\pi}}{\mathrm{2}^+}$ Mult. Comments 1043.5 0.60 8 [E2] 0.00764 $\alpha(K)=0.00639 \ 9; \ \alpha(L)=0.000990 \ 14;$ 589.7 5 $\alpha(M) = 0.000212 \ 3$ $\alpha(N)=4.71\times10^{-5}$ 7; $\alpha(O)=6.94\times10^{-6}$ 10; $\alpha(P)=3.79\times10^{-7}$ 6 I_{γ} : weighted average values of 0.60 8 (1966Bu03) and 0.7 3; other: 0.35 5 (1968Ta09). 735.90 19 22.9 15 1189.73 3-453.83 2+ E1 1.71×10^{-3} *α*(K)exp=0.00138 9; *α*(L)exp=0.00020 2; α (M)exp=0.000044 *19* α (K)=0.001469 21; α (L)=0.000188 3; α (M)=3.95×10⁻⁵ 6 $\alpha(N) = 8.83 \times 10^{-6} \ 13; \ \alpha(O) = 1.337 \times 10^{-6} \ 19;$

 $\alpha(P) = 8.64 \times 10^{-8}$ 13

[†] Weighted average of 1966Bu03, 1968Ta09, 1970Av03, 1974Sc06, except as noted.

[‡] Weighted average of I γ 's from 1966Bu03, 1968Ta09, 1970Av03; I γ per 100 decays of the parent except as noted.

Additional information 1.

[@] Absolute intensity per 100 decays.

146 Pm ε decay 1966Bu03,1968Ta09,1970Av03

Decay Scheme

¹⁴⁶₆₀Nd₈₆