Coulomb excitation 2016Ko13,2001Ho02,1988Ah01

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulvak	NDS 136,163 (2016)	14-Jul-2016	

2016Ko13: measured γ(particle) coin; 182 MeV ⁵⁸Ni and 104 MeV ³²S beams used. Institute of Nuclear Physics of Orsay (IPNO) ALTO facility, MINORCA spectrometer: 8 Miniball triple cluster detectors and 15 Compton suppressed Eurogam Phase-I HPGe detectors, DSSSD particle detector. No numerical data given.

2001Ho02,2000Ho25: Si,Ni(¹⁴⁶Nd,¹⁴⁶Nd'), E=285, 584-608 MeV; measured E γ , I $\gamma(\theta$,H,t), γ (particle) coin following projectile Coulomb excitation. ¹⁴⁶Nd; deduced levels, g factors. Transient field technique.

1990St18: ¹⁴⁶Nd(⁵⁸Ni,⁵⁸Ni'), E=160 MeV; measured E γ , I $\gamma(\theta,H,t)$ following Coulomb excitation. ¹⁴⁶Nd; deduced levels, g factors. Thin foil transient field technique.

1987Be08: ¹⁴⁶Nd(³²S,³²S'), E=235 MeV; measured E γ , I $\gamma(\theta$,H,t), (³²S) γ coin. ¹⁴⁶Nd; deduced levels, g factors.

1988Ah01: ¹⁴⁶Nd(α, α'), E=10.5, 11 MeV; measured $\sigma(E\alpha)$ following Coulomb excitation. ¹⁴⁶Nd; levels, deduced B(E2). Enge split-pole magnetic spectrometer.

1978FaZP,1980FaZW: ¹⁴⁶Nd(α,α'),(¹⁶O,¹⁶O'), E α =11-13 MeV, E(¹⁶O)=42-48 MeV; measured E α , I α , E γ , I γ , $\gamma\gamma$, γ (¹⁶O') coin. ¹⁴⁶Nd; deduced levels, B(E2), quadrupole moment. Ge(Li) anti-Compton and Si(Li) detectors, reorientation precession technique.

1971Cr01: ¹⁴⁶Nd(¹⁶O,¹⁶O'), E=42 MeV; measured $\sigma(E(^{16}O),\theta)$. ¹⁴⁶Nd; deduced levels, B(E2), quadrupole moment. Enge split-pole magnetic spectrometer.

1970Ch14: ¹⁴⁶Nd(α, α'), E=12, 14 MeV; measured B(E2), B(E3).

Others: 1966Ec02, 1978Ka36, 1972Ku10, 1986Sc30, 2003Ma19, 2003Na39.

The level scheme based on fig. 1 of 2001Ho02 and fig.3 of 2016Ko13.

¹⁴⁶Nd Levels

E(level) [†]	$J^{\pi^{\dagger}}$	T _{1/2}	Comments
0.0	0^{+}		
453.77	2+	19.9 ps 2	Q=-0.72 20 (1971Cr01)
			g=+0.291 7 (2001Ho02). Others: +0.31 5 (1978Ka36), +0.22 3 (1972Ku10), +0.29 5
			(1967Be08), +0.32 5 (1987Be08), +0.29 <i>I</i> (1990St18).
			$Q = -0.78 \ 9 \ (1970 Ge08).$
			T _{1/2} : from B(E2)=0.770 7: weighted average of 0.78 <i>1</i> (1988Ah01), 0.760 22 (1971Cr01), 0.68
			10 (1967BuZX), 0.71 6 (1970Ch14), 0.705 34 (1971Ma27), 0.77 1 (1986Sc30). Others: 0.66 1
			(1966Ec02), 0.81 7 (1980FaZW), 0.616 28 (1974MaYP).
915	0^{+}		
1043.22	4^{+}	3.8 ps 10	$T_{1/2}$: from B(E2)=0.58 15 (1967BuZX).
			g: +0.193 27 (2001Ho02).
1189.62	3-		B(E3)=0.26 3 (1970Ch14). Others: 0.21 4 (1967BuZX), 0.41 18 (1963Ha20).
1377	1-		
1471	2+		
1517	5-		
1745 4	+		
1780	6+		

[†] From 'Adopted Levels'.

$\gamma(^{146}\text{Nd})$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α [‡]	Comments
453.64 3	453.77	2+	0.0	0+	E2	0.01537	α (K)=0.01264 <i>18</i> ; α (L)=0.00214 <i>3</i> ; α (M)=0.000463 <i>7</i> α (N)=0.0001025 <i>15</i> ; α (O)=1.486×10 ⁻⁵ <i>21</i> ; α (P)=7.34×10 ⁻⁷ <i>11</i>
461 474.46 8	915 1517	0+ 5-	453.77 1043.22	2+ 4+	E1	0.00444	α (K)=0.00381 6; α (L)=0.000497 7; α (M)=0.0001047 15 α (N)=2.33×10 ⁻⁵ 4; α (O)=3.51×10 ⁻⁶ 5; α (P)=2.21×10 ⁻⁷ 3

Continued on next page (footnotes at end of table)

Coulomb excitation 2016Ko13,2001Ho02,1988Ah01 (continued)

γ (¹⁴⁶Nd) (continued)

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	α^{\ddagger}	Comments
555 589.40 <i>6</i>	1745 1043.22	+ 4+	1189.62 3 ⁻ 453.77 2 ⁺	E2	0.00765	$\alpha(K)=0.00639 \; 9; \; \alpha(L)=0.000991 \; 14; \; \alpha(M)=0.000212$ 3 $\alpha(N)=4.72\times10^{-5} \; 7; \; \alpha(O)=6.95\times10^{-6} \; 10;$
703	1745	+	1043.22 4+	E1	1 71, 10-3	$\alpha(P) = 3.80 \times 10^{-7} 6$
135.114	1189.62	3	453.77 21	EI	1./1×10 5	$\alpha(\mathbf{K})=0.001469\ 21;\ \alpha(\mathbf{L})=0.000188\ 3;\alpha(\mathbf{M})=3.95\times10^{-5}\ 6\alpha(\mathbf{N})=8.83\times10^{-6}\ 13;\ \alpha(\mathbf{O})=1.337\times10^{-6}\ 19;\alpha(\mathbf{P})=8.64\times10^{-8}\ 13$
736.8 1	1780	6+	1043.22 4+	E2	0.00443	$\alpha(K) = 0.00374 \ 6; \ \alpha(L) = 0.000546 \ 8; \ \alpha(M) = 0.0001164 \ 17 \ \alpha(N) = 2.59 \times 10^{-5} \ 4; \ \alpha(O) = 3.86 \times 10^{-6} \ 6; \ \alpha(P) = 2.25 \times 10^{-7} \ 4$
923	1377	1-	453.77 2+			
1016.67 <i>10</i>	1471	2+	453.77 2+	M1+E2	0.0027 6	α (K)=0.0023 5; α (L)=0.00031 6; α (M)=6.5×10 ⁻⁵ <i>12</i> α (N)=1.5×10 ⁻⁵ 3; α (O)=2.2×10 ⁻⁶ 5; α (P)=1.4×10 ⁻⁷ 4
1470.60 12	1471	2+	0.0 0+	E2	1.09×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000881 \ I3; \ \alpha(\mathrm{L}) = 0.0001154 \ I7; \\ &\alpha(\mathrm{M}) = 2.43 \times 10^{-5} \ 4 \\ &\alpha(\mathrm{N}) = 5.44 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 8.25 \times 10^{-7} \ I2; \\ &\alpha(\mathrm{P}) = 5.35 \times 10^{-8} \ 8; \ \alpha(\mathrm{IPF}) = 6.65 \times 10^{-5} \ I0 \end{aligned}$

[†] From 'Adopted Gammas'.
[‡] Additional information 1.

Coulomb excitation 2016Ko13,2001Ho02,1988Ah01

 $^{146}_{60}\mathrm{Nd}_{86}$