¹³⁶**Xe**(¹³**C**,3nγ) **1996Ia01**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016

1996Ia01: ¹³⁶Xe(¹³C,3n γ), E=54 MeV; measured E γ , I γ , $\gamma\gamma(t)$, $\gamma(\theta)$, DCO value. ¹⁴⁶Nd; deduced levels, J^{π} , B(λ) ratios, band structure. NORDBALL detector array, BaF₂ filter. See also 1991Ur01 for earlier study.

¹⁴⁶Nd Levels

See 1991Ur01, 1996Ia01 for description of quasi-rotational bands.

E(level)	J^{π}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0^{\ddagger}	0^{+}	2593.53 [‡] 16	8+	3993.73 [‡] 17	12^{+}	5460.53 [‡] 19	16+
453.71 [‡] 10	2^{+}	2706.22 [#] 16	9-	4028.13 [@] 17	13-	5559.03 [@] 21	17^{-}
1043.22 [‡] <i>14</i>	4+	3109.03 16	9-	4295.03 [#] 17	13-	5612.43 ^b 23	16-
1189.62 [#] 14	3-	3123.83 ^a 16	10^{+}	4694.23 [‡] 18	14^{+}	5899.73 ^{&} 22	18^{+}
1517.52 [#] 14	5-	3245.53 ^b 17	10^{-}	4695.53 ^a 18	14^{+}	6202.53 [@] 23	19-
1780.02 [‡] 15	6+	3319.73 [‡] <i>16</i>	10^{+}	4761.33 [@] 20	15-	6513.73 ^{&} 23	20^{+}
2029.42 [#] 15	7-	3404.73 [@] 16	11^{-}	4786.73 ^b 22	14^{-}	6807.04 [@] 25	(21 ⁻)
2083.52 16	(6^{+})	3500.73 [#] 17	11-	5057.94 [#] 18	15^{-}	7364.24 ^{&} 25	(22^{+})
2335.52 16	7-	3902.23 ^a 17	12^{+}	5160.93 23	15^{+}		
2474.52 ^a 15	8+	3958.13 ^b 19	12^{-}	5362.83 ^{&} 21	16^{+}		

 † From mult. and DCO analysis 1996Ia01.

[‡] Band(A): g.s. band.

Band(B): octupole band.

[@] Band(C): $\Delta J=2$, $\pi=-$ cascade-1.

& Band(D): $\Delta J=2$, $\pi=+$ cascade-1.

^{*a*} Band(E): $\Delta J=2$, $\pi=+$ cascade-2.

^{*b*} Band(F): $\Delta J=2$, $\pi=-$ cascade-2.

$\gamma(^{146}\text{Nd})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. [‡]	R(DCO)	α #
112.7 <i>I</i>	0.8	2706.22	9-	2593.53 8+	E1		0.187
125.9 <i>1</i>	0.8	4028.13	13-	3902.23 12+	E1	0.69 16	0.1380
136.5 <i>1</i>	6.5	3245.53	10-	3109.03 9-	M1+E2	0.66 6	0.629 11
159.2 <i>1</i>	0.8 2	3404.73	11-	3245.53 10-	M1+E2		0.404 24
181.0 <i>1</i>	1.0 2	3500.73	11-	3319.73 10+	E1		0.0513
196.2 <i>1</i>	1.2	5559.03	17^{-}	5362.83 16+	E1		0.0413
249.4 1	32.8	2029.42	7^{-}	1780.02 6+	E1	0.61 2	0.0218
262.5 1	6.2	1780.02	6+	1517.52 5-	E1	0.67 7	0.0191
280.9 1	16.6 8	3404.73	11-	3123.83 10+	E1	0.59 2	0.01604
293.3 1	1.6	6807.04	(21^{-})	6513.73 20+	(E1)	0.52 9	0.01436
301.3 <i>1</i>	2.2	4295.03	13-	3993.73 12+	E1		0.01341
306.1 <i>1</i>	2.9	2335.52	7-	2029.42 7-	M1+E2	0.85 9	0.0582 12
311.2 <i>1</i>	2.1	6513.73	20^{+}	6202.53 19-	E1		0.01235
327.9 1	0.2	1517.52	5-	1189.62 3-	E2		0.0398
340.7 1	3.5	5899.73	18^{+}	5559.03 17-	E1	0.78 7	0.00984
363.7 1	1.5	5057.94	15^{-}	4694.23 14+	E1		0.00837

Continued on next page (footnotes at end of table)

136 Xe(13 C,3n γ) 1	996Ia01	(continued)
--	---------	-------------

					$\gamma(^{146}\text{Nd})$ (continued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	R(DCO)	α #
374.2.1	3.9	5160.93	15^{+}	4786.73 14-	E1	0.55.6	0.00781
391.0 <i>I</i>	2.8	2474.52	8+	$2083.52(6^+)$	(E2)		0.0235
399.2 1	2.7	4694.23	14^{+}	4295.03 13-	È1	0.78 10	0.00668
402.6 1	1.6	5460.53	16^{+}	5057.94 15-	E1	0.68 14	0.00654
417.6 <i>1</i>	3.7	3123.83	10^{+}	2706.22 9-	E1	0.53 7	0.00599
445.1 <i>1</i>	16.6	2474.52	8+	2029.42 7-	E1	0.56 2	0.00515
451.5 <i>1</i>	0.6	5612.43	16-	5160.93 15+	E1		0.00498
453.7 1	100.0	453.71	2+	$0.0 0^+$	E2	1.00 1	0.01536
474.3 <i>1</i>	47.8	1517.52	5-	1043.22 4+	E1	0.59 1	0.00445
493.0 <i>1</i>	3.3	3993.73	12^{+}	3500.73 11-	E1	0.56 6	0.00407
497.5 <i>1</i>	1.1	3902.23	12+	3404.73 11-	E1		0.00398
511.9 <i>1</i>	41.1	2029.42	7^{-}	1517.52 5-	E2	1.08 <i>3</i>	0.01105
527.4 <i>1</i>	1.6	4028.13	13-	3500.73 11-	E2		0.01021
536.9 <i>1</i>	3.8	5899.73	18^{+}	5362.83 16+	(E2)		0.00974
539.3 <i>1</i>	7.6	3245.53	10-	2706.22 9-	M1+E2		0.012 3
555.5 <i>1</i>	8.5	2335.52	7^{-}	1780.02 6+	E1		0.00311
557.2 1	1.1	7364.24	(22^{+})	6807.04 (21 ⁻)	(E1)		0.00309
564.1 <i>1</i>	4.7	2593.53	8+	2029.42 7-	E1		0.00300
589.5 <i>1</i>	99.8	1043.22	4+	453.71 2+	E2		0.00765
601.5 <i>1</i>	11.6	5362.83	16+	4761.33 15-	(E1)		0.00261
613.5 <i>1</i>	3.2	3319.73	10^{+}	2706.22 9-	E1		0.00250
614.0 <i>1</i>	4.1	6513.73	20^{+}	5899.73 18+	E2	1.07 31	0.00690
623.4 <i>1</i>	24.4	4028.13	13-	3404.73 11-	E2	1.06 5	0.00664
634.5 <i>1</i>	0.8	3109.03	9-	2474.52 8+	E1		0.00233
643.5 <i>I</i>	2.7	6202.53	19-	5559.03 17-	E2		0.00614
649.3 1	7.2	3123.83	10+	2474.52 8+	E2	1.08 7	0.00601
667.4 I	2.7	4695.53	14 ⁺	4028.13 13	EI		0.00209
6/4.0 1	2.3	3993.73	12	3319.73 10'	E2	1.02.2	0.00548
0/0.8 I	39.8	2706.22	9 0+	2029.42 /	E2 E2	1.02.5	0.00543
694.5 I	17.2	2474.52	ð 11-	1780.02 0	E2 E2	1.11 0	0.00510
700 5 1	17.29	3404.73	11 14 ⁺	2700.22 9	E2 E2	1.02 5	0.00303
712.6.1	1.5	2058 12	14	$3995.75 \ 12$ $3245.52 \ 10^{-1}$	E2 E2		0.00300
712.01	0.1	3310 73	12	2503 53 8+	E2 E2		0.00480
733.2.1	13.0	4761 33	15-	4028 13 13-	E2 E2		0.00439
735.0 1	0.2	1180.62	3-	453 71 2+	E2 E1		1.71×10^{-3}
736.8.1	55.0	1780.02	5 6 ⁺	$10/3 22 4^+$	E1 E2	1.05.2	0.00443
762.9.1	1.5	5057.94	15-	4295.03 13-	E2 F2	1.05 2	0.00449
766.3.1	0.9	5460 53	16+	4694 23 14+	E2 F2		0.00405
773 5 1	5.8	3109.03	9-	2335 52 7	E2	1 41 13	0.00405
77841	3.0	3902.23	12+	$3123.83 \ 10^+$	E2	1 22 12	0.00390
793 3 1	2.8	4695 53	14+	$3902.23 12^+$	E2	1.22 12	0.00374
794.3 1	3.0	4295.03	13-	3500.73 11	E2	1.11.6	0.00373
794.5 /	11.2.5	3500.73	11-	2706.22 9-	E2		0.00372
797.7 1	6.0	5559.03	17-	4761.33 15-	E2	0.91 5	0.00369
813.5 <i>I</i>	2.4	2593.53	8+	1780.02 6+	E2		0.00353
825.7 1	2.0	5612.43	16-	4786.73 14-	E2		0.00341
828.6 1	5.0	4786.73	14-	3958.13 12-	E2	0.81 7	0.00338
850.5 1	4.6	7364.24	(22^{+})	6513.73 20+	(E2)		0.00319
890.3 <i>1</i>	0.8	4295.03	13-	3404.73 11-	E2		0.00288
1040.3 <i>1</i>	1.8	2083.52	(6 ⁺)	1043.22 4+	(E2)		0.00206

 † From 1996Ia01; $\Delta I\gamma$ =5% for the most intense transitions and reach 25% for weak ones (1996Ia01).

Continued on next page (footnotes at end of table)

¹³⁶Xe(¹³C,3nγ) **1996Ia01** (continued)

γ (¹⁴⁶Nd) (continued)

[‡] From 1996Ia01; deduced from DCO ratios and analysis of common sequence of levels connected by $\Delta J=2$ transitions, also on previous spin-parity assignment for the low part level scheme. Stretched quadrupoles are assumed to be E2 as no lifetimes longer than 8 ns were observed.

[#] Additional information 1.

 136 Xe(13 C,3n γ) 1996Ia01 Legend Level Scheme $\begin{array}{c|c} \bullet & I_{\gamma} < & 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < & 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > & 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Relative I_{γ} $\stackrel{\delta_{n_s}}{=} \frac{s_{n_s}}{s_{r_2}} \frac{e_{r_3}}{e_{r_3}}$ (22⁺) 7364.24 *⊣ ≥*9_{3,3} (E_{1)1,6} $= \frac{1}{3_{l_{2}}} \frac{o_{l_{2}}}{e_{l_{2}}} \frac{e_{l_{2}}}{e_{l_{2}}}$ (21^{-}) 6807.04 20^{+} 6513.73 4 6435 E2221 $\frac{1}{2} \frac{s_{g_0}}{s_{g_0}} \frac{(e_2)_{J_0}}{(e_2)_{J_0}}$ 19-6202.53 $\begin{bmatrix} 43_{5} \\ 45_{5} \\ 55_{5} \\ 51_{5} \\ 51_{0} \\ 6_{1} \end{bmatrix}$ 18^{+} 5899.73 29.2 E106 1 40, 1 2, 1, 6 E1 1, 6 0.0 CA (E1)11.6 16-5612.43 17-5559.03 کې ج 16^{+} 5460.53 |_{0,E1} |0,E1 $\frac{1}{2} \frac{2 \frac{2}{6} \frac{2}{3} \frac{2}{6} \frac{2}{2} \frac{2}{2}$. 6 16^{+} 5362.83 15+ 5160.93 $+\frac{1}{3_{3_2}}$ + 238.0 + 238.0 + $\begin{array}{c|c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$ 5057.94 15-14-4786.73 15-4761.33 4695.53 4694.23 14^{+} 14^{+} $g_{0,3}^{g_{0,3}}$ $g_{2,3}^{g_{0,3}}$ $g_{2,3}^{g_{0,8}}$ $g_{0,8}^{g_{0,8}}$ $g_{0,3}^{g_{0,8}}$ $g_{0,3}^{g_{0,8}}$ $g_{0,3}^{g_{0,3}}$ $g_{0,3}^{g_$ 23.4 (10) 13-4295.03 15 5 10.8 10.8 $\frac{13^{-}}{12^{+}}$ 4028.13 3993.73 12-3958.13 12^{+} 3902.23 11-3500.73 3404.73 11- 10^{+} 3319.73 10-3245.53 0^+ 0.0

 $^{146}_{60}\mathrm{Nd}_{86}$

4

ć

 $\boldsymbol{\nabla}$

 $^{146}_{60}\mathrm{Nd}_{86}$