¹⁴⁶Tb ε decay (8 s) 1989KIZY,1982No08,1983Al06

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016

Parent: ¹⁴⁶Tb: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=8 \text{ s } 4$; $Q(\varepsilon)=8320 40$; $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay=100.0 ¹⁴⁶Tb-from 2012Au07, 2012Wa38; $T_{1/2}$ from $I\gamma(t)$ ¹⁴⁶Dy ε decay (1982No08).

1989KlZY: ¹⁴⁶Tb(1⁺) ε decay [from Gd(³He,xn)¹⁴⁶Dy(0⁺) ε decay, E=280 MeV]; measured E γ , E γ , $\gamma\gamma$, γ (X-ray) coin.

¹⁴⁶Gd; deduced levels, J^{π} , ε branchings, log *ft*. ISOCELE-II on-line mass-separator.

1995GoZV,1996GoZZ: ¹⁴⁶Tb(1⁺) ε decay [from Ta(p,X), E=660 MeV]; E γ , I γ , ce, ε branching. ¹⁴⁶Gd; deduced level, J^{π} . Synchrocyclotron, β spectrometer on-line YaSNAPP-2 facility.

The ¹⁴⁶Gd level scheme is from 1989KlZY, constructed on the basis of measurement of $\gamma\gamma$ and γ (X-ray) coincidences and of using the (p,t) (1989Ma28) and (α ,2n) (1986Ya06,1987Ya13) results.

Measured: γ (t) (1993VaZW,1983Al06,1982No08,1981StZO,1980To06), β^+ (1983Al06).

146Gd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 1579.55 15 1972.02 7 2164.72 12 2986.4 2 3185.95 10 3232.5 4	$ \begin{array}{c} 0^{+} \\ 3^{-} \\ 2^{+} \\ 0^{+} \\ 2^{+} \\ 2^{+} \\ 2^{+} \\ 2^{+} \\ 2^{+} \\ \end{array} $	48.27 d 9	T _{1/2} : from 'Adopted Levels'.
3232.5 <i>4</i> 3484.93 <i>21</i>	2^+ 0^+		

[†] From 'Adopted Levels'.

[‡] From 1989KlZY.

 ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
$(4.84 \times 10^3 \ 4)$	3484.93	0.27 8	0.10 3	6.2 3	0.37 11	av Eβ=1735 24; εK=0.230 7; εL=0.0337 10; εM+=0.0097 3
$(5.09 \times 10^3 \ 4)$	3232.5	0.53 8	0.16 3	6.05 23	0.69 11	av E β =1853 24; ε K=0.200 6; ε L=0.0293 9; ε M+=0.00847 24
$(5.13 \times 10^3 \ 4)$	3185.95	0.98 14	0.29 4	5.80 23	1.27 18	av E β =1875 24; ε K=0.195 6; ε L=0.0286 8; ε M+=0.00825 23
$(5.33 \times 10^3 \ 4)$	2986.4	0.29 7	0.077 19	6.42 25	0.37 9	av E β =1969 24; ε K=0.175 5; ε L=0.0256 7; ε M+=0.00740 21
$(6.16 \times 10^3 \ 4)$	2164.72	2.5 3	0.40 6	5.83 23	2.9 4	av Eβ=2356 24; εK=0.115 3; εL=0.0168 5; εM+=0.00485 12
$(6.35 \times 10^3 \ 4)$	1972.02	7.8 16	1.1 2	5.41 24	8.9 18	av E β =2448 24; ε K=0.105 3; ε L=0.0153 4; ε M+=0.00442 11
$(6.74 \times 10^3 \ 4)$	1579.55	1.4 6	0.17 7	6.3 ¹ <i>u</i> 3	1.6 7	av Eβ=2634 24; εK=0.0875 20; εL=0.0128 3; εM+=0.00369 9
$(8.32 \times 10^3 \ 4)$	0.0	79 2	4.6 1	5.03 22	84 2	av Eβ=3391 24; εK=0.0458 9; εL=0.00666 13; εM+=0.00192 4

[†] Absolute intensity per 100 decays.

¹⁴⁶Tb ε decay (8 s) **1989KIZY,1982No08,1983Al06** (continued)

$\gamma(^{146}\text{Gd})$

I(γ +ce) normalization: from 84% 2 ε -feeding to ¹⁴⁶Gd ground state (1989KIZY).

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α [@]	$I_{(\gamma+ce)}$ †&	Comments
192.5	2164.72	0+	1972.02	2+	E2	0.252	7	ce(K)/(γ +ce)=0.1386 17; ce(L)/(γ +ce)=0.0487 7; ce(M)/(γ +ce)=0.01125 16 ce(N)/(γ +ce)=0.00253 4; ce(O)/(γ +ce)=0.000346 5; ce(P)/(γ +ce)=7.89×10 ⁻⁶ 12 α (K)=0.1736 25; α (L)=0.0610 9; α (M)=0.01409 20 α (N)=0.00317 5; α (O)=0.000433 6; α (P)=9.88×10 ⁻⁶ 14 I(γ +ce): I(2165,E0)/I γ (193,E2)=4.5 9 (1989KIZY). If I(2165,E0)=20, I(γ +ce) of 193 γ , calculated by the evaluators, equals 5.6 (in fig. 1 this value stated as 7).
392.6	1972.02	$2^+_{2^+}$	1579.55	$3^{-}_{2^{+}}$			1	·
1213.9 $1261^{\ddagger a}$	3185.95	2 · 2+	1972.02	2+ 2+			≈2 ≈1	
1407 [‡]	2986.4	2+	1579.55	2 3-			<3	
1512.9	3484.93	0^{+}	1972.02	2^{+}	-	0.00016	≈3	
1579.40 5	1579.55	3-	0.0	0+	E3	0.00216	32	$\begin{aligned} &\alpha(\text{K})\exp=0.00177 \ 13 \ (1995\text{GoZV}) \\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.001773 \ 25; \\ &\text{ce}(\text{L})/(\gamma+\text{ce})=0.000261 \ 4; \\ &\text{ce}(\text{M})/(\gamma+\text{ce})=5.69\times10^{-5} \ 8 \\ &\text{ce}(\text{N})/(\gamma+\text{ce})=1.307\times10^{-5} \ 19; \\ &\text{ce}(\text{O})/(\gamma+\text{ce})=2.01\times10^{-6} \ 3; \\ &\text{ce}(\text{P})/(\gamma+\text{ce})=1.276\times10^{-7} \ 18; \\ &\alpha(\text{IPF})/\text{T}_{1/2}=4.63\times10^{-5} \ 7 \\ &\alpha(\text{K})=0.001777 \ 25; \ \alpha(\text{L})=0.000262 \ 4; \\ &\alpha(\text{M})=5.71\times10^{-5} \ 8 \\ &\alpha(\text{N})=1.310\times10^{-5} \ 19; \ \alpha(\text{O})=2.01\times10^{-6} \ 3; \\ &\alpha(\text{P})=1.278\times10^{-7} \ 18; \ \alpha(\text{IPF})=4.64\times10^{-5} \\ &7 \end{aligned}$
1606.5	3185.95	$2^+_{2^+}$	1579.55	$3^{-}_{2^{-}}$			9	
1972.1	1972.02	2+ 2+	0.0	3 0+	E2	1.01×10 ⁻³	95	ce(K)/(γ +ce)=0.000628 9; ce(L)/(γ +ce)=8.34×10 ⁻⁵ 12; ce(M)/(γ +ce)=1.80×10 ⁻⁵ 3 ce(N)/(γ +ce)=4.13×10 ⁻⁶ 6; ce(O)/(γ +ce)=6.41×10 ⁻⁷ 9; ce(P)/(γ +ce)=4.35×10 ⁻⁸ 6; α (IPF)/T _{1/2} =0.000274 4 α (K)=0.000629 9; α (L)=8.35×10 ⁻⁵ 12; α (M)=1.80×10 ⁻⁵ 3 α (N)=4.13×10 ⁻⁶ 6; α (O)=6.42×10 ⁻⁷ 9; α (P)=4.36×10 ⁻⁸ 7; α (IPF)=0.000274 4
2164.6	2164.72	0^{+}	0.0	0^{+}	E0		20	
2986.4	2986.4	2+	0.0	0+			2	
3186.1+	3185.95	2+	0.0	0^{+}			1	

Continued on next page (footnotes at end of table)

$^{146}{\rm Tb}\,\varepsilon$ decay (8 s) 1989KIZY,1982No08,1983Al06 (continued)

$\gamma(^{146}\text{Gd})$ (continued)

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	$I_{(\gamma+ce)}^{\dagger}$
3233 ^{‡a}	3232.5	2^{+}	$0.0 \ 0^+$	<1
3485	3484.93	0^{+}	$0.0 \ 0^+$	<1

[†] From fig. 1 of 1989KIZY. ΔI(γ+ce)=10% is assumed by evaluators.
[‡] Placed from energy fit in 1989KIZY.
[#] From ce and γ measurement at ISCELE II on-line mass-separator (1989KIZY).
[@] Additional information 1.
[&] For absolute intensity per 100 decays, multiply by 0.106 *15*.
^a Placement of transition in the level scheme is uncertain.

¹⁴⁶Tb ε decay (8 s) 1989KlZY,1982No08,1983Al06

Legend

Decay Scheme

 $^{146}_{64}\text{Gd}_{82}$