¹⁴⁶Gd ε decay **1981Ka07,1978Ma47**

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016	

Parent: ¹⁴⁶Gd: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=48.27$ d 9; $Q(\varepsilon)=1032$ 7; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁴⁶Gd-T_{1/2} from 'Adopted Levels', Q(g.s.) from 2012Wa38.

1981Ka07: ¹⁴⁶Gd ε decay [from ¹⁴⁴Sm(α ,2n), E=27 MeV]; measured E γ , I γ , $\gamma\gamma$, γ (X-ray) coin. Deduced levels, J^{π} . Cyclotron, mass-separator, Ge(Li), X-ray detectors.

1978Ma47,1973Ga26: ¹⁴⁶Gd ε decay [from Ta(p,X), E=660 MeV]; measured E γ , I γ , E(ce), Ice, L-subshell ratios. Deduced levels, J^{π} , α , δ . Ge(Li) detector, magnetic β spectrometer.

1976Se02: ¹⁴⁶Gd ε decay [from ¹⁴⁴Sm(α ,2n), E=27 MeV]; measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, $\gamma(X$ -ray) coin, $\gamma(t)$, T_{1/2}. Deduced levels, J^{π} , δ .

1970An18: ¹⁴⁶Gd ε decay; measured E γ , I γ , Ice, K-, L-, M-subshell ratios. Deduced levels, α , J^{π} , δ .

2013Bh07: ¹⁴⁶Gd ε decay [from ¹⁴⁴Sm(α ,2n), E α =32 MeV]; measured E γ , I γ , $\gamma\gamma$ -coin, level T_{1/2} by $\gamma\gamma$ (t). Deduced levels,

 J^{π} , β feedings, log *ft*, configurations. Measured T_{1/2} by $\gamma\gamma$ (t). Mirror symmetric centroid difference method for half-life. Others: 1958Go86, 1963Fr02, 1963Bo44, 1966Av04, 1970Ag01, 1970Ch09, 1970Ko16, 1972Ho51.

The ¹⁴⁶Eu level scheme from ¹⁴⁶Gd ε decay is that proposed by 1981Ka07 on the basis of γ , $\gamma\gamma$, (X-ray) γ coin. It differs from the earlier proposed schemes by repositioning in the cascade of coincident γ rays: the 114.7 keV level decays by the 114.7 keV transition and the 230.2 keV level decays by 115.5 keV transition. Such a sequence is supported by the measurements of (p,2n) reactions and ¹⁴⁶Gd ε decay (2013Bh07). The analysis of the 2013Bh07 data shows that the work is done with a poor energy calibration.

Additional information 1.

¹⁴⁶Eu Levels

E(level) [†]	J ^{π‡}	T _{1/2}	Comments
0.0	4-		
114.712 20	3-	3.7 ps 16	$T_{1/2}$: from $\beta\gamma$ (t) using mirror symmetric centroid (MSCD) analysis (2013Bh07). Others: <0.160 ns (1972Ho51), <0.3 ns (1976Se02).
230.23 3	2-	5.8 ps 15	$T_{1/2}$: from $\beta\gamma$ (t) using mirror symmetric centroid (MSCD) analysis (2013Bh07). Others: <0.165 ns (1972Ho51), <0.3 ns (1976Se02).
384.80 4	1-		
421.62 7	(3)-		
498.16 7	(2^{-})		
690.71 20	(2) ⁻		

[†] From a least-squares fit to $E\gamma$ data; normalized $\chi^2 = 0.7$.

[‡] From 'Adopted Levels, Gammas.

 ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(341 7)	690.71	0.067 10	9.66 7	εK=0.8069 10; εL=0.1486 8; εM+=0.0445 3
(534 7)	498.16	0.23 8	9.53 ¹ <i>u</i> 16	εK=0.7849 12; εL=0.1647 9; εM+=0.0504 3
(647 7)	384.80	72.1 14	7.241 14	εK=0.8268 3; εL=0.13383 17; εM+=0.03933 6
(802 7)	230.23	26.5 16	8.22^{1u} 3	εK=0.8100 4; εL=0.1463 3; εM+=0.04375 11
				Note that this value of log ft is lower than log $ft>8.5$ expected for 1u β transitions.

[†] Absolute intensity per 100 decays.

¹⁴⁶Gd ε decay **1981Ka07,1978Ma47** (continued)

 $\gamma(^{146}\text{Eu})$

I γ normalization: assuming $\Sigma(I(\gamma+ce) \text{ to g.s.})=100$.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{@}$	α #	Comments
76.54 1	0.05 2	498.16	(2 ⁻)	421.62	(3)-	[M1,E2]		5.3 13	$\alpha(K)=2.8 \ 6; \ \alpha(L)=1.9 \ 15; \ \alpha(M)=0.4 \ 4$ $\alpha(N)=0.10 \ 8; \ \alpha(O)=0.014 \ 10;$ $\alpha(D)=0.00007 \ 11$
114.71 2	94.5 10	114.712	3-	0.0	4-	M1+(E2)	<0.04	1.247	$\alpha(F)=0.00027717$ $\alpha(K)=1.05575, \alpha(L)=0.151022;$ $\alpha(M)=0.03265$ $\alpha(N)=0.0074771; \alpha(O)=0.00118417;$ $\alpha(P)=0.000116717$ $\alpha(exp): ce(K)=20412(1978Ma47);$ ce(K)=1025, ce(L1)=13, ce(L2)=0.9515, ce(L3)=0.268(1973Ga26); K:L1:L2:L3:M1:M2:M3 ⁺ :N:O+=100.035:13.65:1.0015:<0.3:2.94:0.3216:<0.2:0.801::0.188(1970An18). $\alpha: KC:L1C:L2C:L3C:M1C:M2C:M3C+:NC:(OC+PC)=100.014:13.0518:1.02516:0.191860:2.80540:0.247440:0.047240:0.047240:0.70712:0.123317 from exp. subshell ratios. \delta: from 1973Ga26. \delta<0.01 (1963Bo44).\delta=0.000.8 from exp. subshell ratios$
115.51 2	94.5 10	230.23	2-	114.712	3-	M1+(E2)	<0.022	1.223	
154.57 2	100 /	384.80	1-	230.23	2-	M1(+E2)	<0.071	0.537	α(K)=0.455 7; α(L)=0.0649 10; α(M)=0.01402 21 α(N)=0.00321 5; α(O)=0.000509 8; α(P)=5.02×10 ⁻⁵ 7 I _γ : ΔIγ is not specified by the authors of 1981Ka07, the evaluators assumed ΔIγ=1 by analogy with the data for other transitions. α(exp): ce(K)=100 (1978Ma47); ce(K)=50 3, ce(L1)=6.5 5, ce(L2)=0.50 7, ce(L3)=0.085 20 (1973Ga26); K:L1:L2:L3:M1:M2:M3 ⁺ :N:O+P=50.7 30:6.78 20:0.54 9:<0.1:1.44 15:0.15 8:<0.1:0.42 8:<0.1 (1970An18). α: α(K):α(L1):α(L2):α(L3):α(M1):

Continued on next page (footnotes at end of table)

			1	⁴⁶ Gd ε de	ecay	1981Ka07	7,1978Ma47	(continued)
						γ(¹⁴⁶ Eu) (cc	ontinued)	
E_{γ}^{\dagger}	I_{γ} †&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
			_					14:13.02 18:1.04 30:0.206 30:2.789 40:0.244480:0.0507 70:0.708 10:0.1230 17 from exp.subshell ratios. δ : from 1973Ga260.041< δ <-0.018
230.51 20	0.19 10	230.23	2-	0.0	4-	[E2]	0.1347	$\alpha(K)=0.0989 \ 14; \ \alpha(L)=0.0278 \ 4; \ \alpha(M)=0.00632 \ 10 \ \alpha(N)=0.001417 \ 21; \ \alpha(O)=0.000204 \ 3; \ \alpha(P)=8.73\times10^{-6} \ 13 \ E_{\gamma}: \text{ from } 1976\text{Se02; not observed by } 1981\text{Ka07.} \ E_{\gamma}=230.2 \ 5, \ I_{\gamma}\approx 0.02 \ (1978\text{Ma47}). \ I_{\gamma}: \text{ from } 1976\text{Se02, normalized to } 1981\text{Ka07 by the evaluators}$
267.8 2	0.08 4	498.16	(2-)	230.23	2-	(M1,E2)	0.101 18	ce(K)=0.020 8 (1978Ma47); α (K)exp=0.11 6 α (K)=0.082 19; α (L)=0.0149 8; α (M)=0.00330 25 α (N)=0.00075 5; α (O)=0.000114 3; α (P)=8.E-6
^x 270.1	< 0.01							E_{γ} : not observed by 1981Ka07. $E\gamma$ =269.28 4, I γ =0.15 6 (1978Ma47).
383.5 1	0.10 4	498.16	(2^{-})	114.712	3-			
421.6 <i>1</i>	0.174 20	421.62	(3)-	0.0	4-	M1	0.0361	ce(K)=0.016 4; α (K)exp=0.032 6 (1978Ma47) α (K)=0.0307 5; α (L)=0.00425 6; α (M)=0.000914 13 α (N)=0.000209 3; α (O)=3.33×10 ⁻⁵ 5; α (P)=3.34×10 ⁻⁶ 5
576.0 2	0.14 2	690.71	(2)-	114.712	3-	M1	0.01634	ce(K)=0.0038 4; α (K)exp=0.013 4 (1978Ma47) α (K)=0.01392 20; α (L)=0.00190 3; α (M)=0.000410 6 α (N)=9.38×10 ⁻⁵ 14; α (O)=1.493×10 ⁻⁵ 21; α (P)=1 507×10 ⁻⁶ 22
^x 742	< 0.02							E_{γ} : not observed by 1981Ka07.

[†] From 1981Ka07, except as noted.

⁺ From 1981Ka07, except as noted. ⁺ from $\alpha(K)$ exp and subshell ratios; $\alpha(K)(154.6\gamma)$ of M1 mult. normalized to 0.455 (2008Ki07). [#] Additional information 2. [@] If No value given it was assumed δ =1.00 for E2/M1. [&] For absolute intensity per 100 decays, multiply by 0.469 7. ^x γ ray not placed in level scheme.

¹⁴⁶Gd ε decay 1981Ka07,1978Ma47

Decay Scheme

¹⁴⁶₆₃Eu₈₃