Adopted Levels, Gammas

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016

 $Q(\beta^{-})=-1032$ 7; S(n)=7197 7; S(p)=3755 6; $Q(\alpha)=1600$ 24 2012Wa38

Produced and identified by 1957Go78, 1957Go72. Spallation of Ta under bombardment with 660 MeV protons.

A

The ¹⁴⁶Eu level scheme is built on the basis of ε decay and reaction measurements. There was stated the cascade of coincident transitions 70 \rightarrow 433 \rightarrow 464 \rightarrow 136 keV in (HI,xn γ). However, the evaluators changed the sequence 433 and 464 transitions according to (α ,p4n γ) results and intensity balance at the corresponding levels.

¹⁴⁶Gd ε decay **D**

¹⁴⁶Eu Levels

Cross Reference (XREF) Flags

 144 Sm(³He,p)

			1	B ¹⁵⁰ Tb α decay E ¹⁴⁷ Sm(α , p4n γ)
			(C 147 Sm(p,2n γ) F (HI,xn γ)
E(level) ^{†‡}	J ^{π#}	T _{1/2}	XREF	Comments
0.0 ^{&}	4-	4.61 d <i>3</i>	A CDEF	 %ε+%β⁺=100 μ=+1.422 6; Q=-0.179 5 J^π: from atomic beam magnetic resonance technique (1972Ek05); parity: decay pattern (1968Pa13), single particle model analysis (1972Ho51). μ: weighted average of +1.425 11 (1985Ah02) and +1.421 8 (1993HuZU) (collinear-laser-ion-beam spectroscopy). Others: +1.3 2 (1985Va21), +1.7 3 (1983Kr19). Q: from (collinear-laser-ion-beam spectroscopy) Q/Q(¹⁵³Eu)=-0.0743 20 (1993HuZU), Q(¹⁵³Eu)=2.412 21 (1984Ta04). Other: -0.18 6 (1985Ah02). T_{1/2}: weighted average of 4.59 d 3 (1964Ta11) and 4.65 d 4 (1970Ch09) Other: 4.95 d (2000La10).
14.51 ^{&} 9	5- <i>i</i>		C EF	J^{π} : 14.49 γ (M1) to 4 ⁻ , 358.2 γ M1 from 6 ⁻ , 274.8 γ M1 from 6 ⁻ .
114.713 20	3-	3.7 ps <i>16</i>	A CD	J ^π : 114.7γ M1+E2 to 4 ⁻ , 115.5γ M1+E2 from 2 ⁻ , 576.0γ M1 from 2 ⁻ . T _{1/2} : from βγ(t) using mirror symmetric centroid (MSCD) analysis (2013Bh07). Others: 0.8 ns 3 (1970Ko16), <0.160 ns (1972Ho51), <0.3 ns (1976Se02), ≈0.23 ns (1958Be72).
230.23 3	2-	5.8 ps 15	A CD	J^{π} : log $f^{lu}t=8.22$ in ε decay g.s., 0 ⁺ of ¹⁴⁶ Gd; 230.5 γ to 4 ⁻ . T _{1/2} : from $\beta\gamma$ (t) using mirror symmetric centroid (MSCD) analysis (2013Bh07). Others: <0.165 ns (1972Ho51), <0.3 ns (1976Se02).
289.29 ^{&} 10	6 ⁻ⁱ		CDEF	
316.44 ^{<i>a</i>} 10 331.06 22	5-		C EF C	J ^π : 316.5γ M1 (Δ J=1) to 4 ⁻ , 56.3γ from 6 ⁻ .
372.64 ^{<i>a</i>} 10	6 ^{-<i>i</i>}		C EF	
384.80 4	1-		A CD	J ^{π} : log ft=7.24 in ε decay g.s., 0 ⁺ of ¹⁴⁶ Gd; 154.6 γ M1+(E2) to 2 ⁻ .
421.59 7 436	(3,4) ⁻		A D	J^{π} : 421.6 γ M1 to 4 ⁻ , 76.5 γ from (1,2) ⁻ .
498.13 7	(1,2) ⁻		A CD	J^{π} : log $f^{lu}t=9.52$ in ε decay g.s., 0 ⁺ of ¹⁴⁶ Gd; 267 γ (M1,E2) to 2 ⁻ , 383.5 γ to 3 ⁻ .
647.53 ^a 11	7-		CDEF	J ^π : 274.9γ M1 (Δ J=1) to 6 ⁻ , 358.2γ M1 to 6 ⁻ , significant feeding from 9 ⁺ by 18.8γ (M2).
666.33 ^b 11	9+ <i>i</i>	235 μs 3	C EF	%IT=100 T _{1/2} : weighted average of 230 μ s 10 (1980LeZN), 235 μ s 25 (1980Er04), 240 μ s 10 (1962Re04), 235 μ s 3 (1971HaXM)
690.71 20	2-		A D	XREF: D(683). I_{4} is a d_{4} = 0.66 from $I_{-}0^{+}$ in a decay as 0^{+} of 1^{46} Cd; 576 by M1 to 2^{-}
752.80 20			CD	XREF: D(746).

Continued on next page (footnotes at end of table)

¹⁴⁶Eu Levels (continued)

E(level) ^{†‡}	$J^{\pi \#}$	T _{1/2}	XREF	Comments
802.36 ^d 15	8+ <i>j</i>		DEF	XREF: D(796).
805.97 22	0		C	ANDI : D(170).
839.56 24			CD	XREF: D(836).
878			D	
914.2 <i>4</i>			С	
936			D	
1201			D	
1235.27 ^d 17	9+ <i>j</i>		E	
1698.71 ^e 18	10 ⁺		EF	
1768.70 [°] 17	11-	4.5 ns 7	EF	J^{π} : 70.0 γ E1 (ΔJ =1) to 10 ⁺ , 966.2 γ (E3) to 8 ⁺ .
				$T_{1/2}$: from ¹⁴⁷ Sm(p,2n) of 1988Er02.
1882.83 [°] 21	9-		E	J^{π} : 1080 γ E1 (stretched $\Delta J=1$) to 8 ⁺ , 1216.1 γ E1 to 9 ⁺ multiplet assignment.
1978.06 [°] 22	10-		E	J^{n} : 209.4 γ M1 (stretched $\Delta J=1$) to 11 ⁻ , 95.2 γ to 9 ⁻ .
2026.98 19	12-		EF	J^{n} : 258.3 γ M1 (stretched $\Delta J=1$) to 11 ⁻ , 1275 γ from (14) multiplet assignment.
2105.42 ^J 19	11+		EF	J^{π} : 1439.1 γ E2 (stretched $\Delta J=2$) to 9 ⁺ .
2540.06 ⁸ 22	(12^+)		EF	J^{π} : 434.8 γ D+Q(M1+E2, Δ J=1) to 11 ⁺ , 513.0 γ to 12 ⁻ .
2665.888 23	(13^{+})		EF	J^{*} : 125.8 γ M1 (stretched $\Delta J=1$) to (12 ⁺), 843 γ from (14).
2951.238 25	(14')		EF	$J^{*}: 285.5\gamma D+Q(M1+E2) (\Delta J=1) \text{ to } 13^{+}, 518.5\gamma \text{ from } (15^{+}).$
3302 1 3	(14)		E F	
3400	(14)		E	
3469.8 ^g 4	(15^{+})		EF	J^{π} : 518.5 γ D+Q(M1+E2)(Δ J=1) to (14 ⁺), 442 γ from (16).
3509.1 <i>3</i>	(14)		F	
3619.2 <i>3</i>	(15)		F	
3714.2 4	(15)		F	
3745.8 4	(16)		F	
3782.0 4	(15)		F	
3911.2 4	(16)		F	
4120.0 5	(16)		F	
4130	(17)		E	
4100.3 4	(17) (16)		r F	
4170.8 4	(10)		r F	
5022 5 4	(10)		T F	
5058.0 4	(19)		F	
5169.3 4	(18)		F	
5184.3 5	(20)		F	
5372.3 5	(19)		F	
5486.0 5	(18)		F	
5525.6 4	(18)		F	
5830.4 4	(19)		F	
5905.4 <i>4</i> 6185.1 <i>4</i>	(20)		r F	
6345 3 6	(21) (22)		r F	
6350 7 5	(22)		F	
6689.1 5	(20) (21)		F	
6832.7 6	(21)		F	
6980.9 <i>5</i>	(22)		F	
7535.9 6	(23)		F	
8128.9 6	(24)		F	
8138.9 6	(24)		F	
8207.9 6	(25)		F	
8445.9 7	(26)		F	
8649.9 ⁿ 7	(27)	10.0 [@] ns 6	F	

¹⁴⁶Eu Levels (continued)

$E(level)^{\ddagger\ddagger}$	$J^{\pi #}$	XREF
9166.9 8	(28)	F
10365.9 9	(29)	F

[†] If $\Delta E\gamma$ not given, ± 0.30 keV assumed for least-squares fitting.

- [‡] From a least-squares fit to $E\gamma$, normalized $\chi^2 = 1.07$.
- [#] Spin assignment for the levels higher than 3300 keV was made on the basis of angular distribution analysis in 1999Id01.
- [@] from $\gamma\gamma$ (t) with pulsed beam (1999Id01).
- & Possible configuration= $\pi d_{5/2}^{-1} \times v f_{7/2}$ (1988Er02).
- ^{*a*} Possible configuration= $\pi g_{7/2}^{-1} \times v f_{7/2}$ (1988Er02).
- ^b Possible configuration= $\pi h_{11/2} \times \nu f_{7/2}$ (1988Er02).
- ^c possible configuration= $\pi h_{11/2} \times v f_{7/2} \times 3^-$ (1988Er02), or $\pi h_{11/2} \times v i_{13/2}$ for the level at 2027 keV, 12⁻, (1988La18, (α ,d)) reaction).
- ^d Possible configuration= $\pi d_{5/2}^{-1} \times v i_{13/2}^*$ (1988Er02).
- ^{*e*} Possible configuration = $\pi g_{7/2}^{-1} \times v i_{13/2}^{*}$ (1988Er02).
- ^{*f*} Possible configuration=9⁺×(π^{-2})₂₊ (1988Er02). ^{*g*} Possible configuration=9⁺×($\pi^{-1}_{5/2}$ ×g⁻¹_{7/2})₆₊ (1988Er02).
- ^h Possible configuration= $[\nu(f_{7/2}h_{11/2}i_{13/2}) \times \pi(d_{5/2}^{-1}h_{11/2}^2)]_{27^+}$ (1999Id01), see systematics of high spin isomers (2005Od03,2002Go06).
- ^{*i*} Cascades of $377(E3) \rightarrow 275(M1) \rightarrow 14.5(M1)$ and $294(E3) \rightarrow 358(M1) \rightarrow 14.5(M1) \gamma$'s from the 666 level to the 4⁻ g.s. (no γ 's from 289 and 373 levels to 4⁻ g.s.) establish $J^{\pi}(666)=9^+$, $J^{\pi}(373)=6^-$, $J^{\pi}(289)=6^-$, and $J^{\pi}(14.4)=5^-$.
- ^{*j*} Cascade of $463(M1,\Delta J=1) \rightarrow 433(M1,\Delta J=1) \rightarrow 136(M1,\Delta J=1)$ and cross-over $1032(M1,\Delta J=1)$ g's to 9⁺ level establish $J^{\pi}(1698)=10^+$, $J^{\pi}(1235)=9^+$, and $J^{\pi}(802)=8^+$.

					A	dopted Level	s, Gamma	s (continued)		
							γ(¹⁴⁶ Eu)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E_f	J_f^π	Mult.	δ^{d}	α^{c}	$I_{(\gamma+ce)}$	Comments
14.51	5-	14.49 9	100	0.0	4-	(M1)		84.1 20		
114.713	3-	114.71 2	100	0.0	4-	M1+(E2)	< 0.04	1.247		B(M1)(W.u.)>0.040
230.23	2-	115.51 2	100 ^{<i>a</i>} 1	114.713	3-	M1+(E2)	< 0.022	1.223		δ: from 19/3Ga26. $δ < 0.01$ (1963Bo44). B(M1)(W.u.)>0.039 $δ$: from 1973Ga26. $\delta < 0.01$ (1963Bo44).
		230.51 20	0.20 ^{<i>a</i>} 11	0.0	4-	[E2]		0.1347		B(E2)(W.u.)>0.10
289.29	6-	274.77 5	100	14.51	5-	M1		0.1112		
316.44	5-	316.46 11	100	0.0	4-	M1		0.0763		
331.06		216.3 331.1		114.713 0.0	3- 4-					
372.64	6-	56.26 17	0.64 8	316.44	5-					
		83.41 23	≤0.56	289.29	6-					
204.00	1-	358.18 9	100 50	14.51	5-	M1	0.071	0.0551		
384.80	1-	154.57 2	100	230.23	2-	M1(+E2)	<0.071	0.537		δ: from 1973Ga260.041< $δ$ <-0.018 (1963Bo44).
421.59	(3,4) ⁻	421.6 1	100	0.0	4-	M1		0.0361		
498.13	$(1,2)^{-}$	76.54 1	$50^{a} 20$	421.59	$(3,4)^{-}$	[M1,E2]		5.3 13		
		267.74 17	80 ^a 40	230.23	2-	(M1,E2)		0.101 18		
		383.5 1	100° 40	114./13	3					
647.53	7-	274.90 7	43 [°] 20	372.64	6-	M1		0.1110		
		358.20 9	100 24	289.29	6-	M1		0.0551		
666.33	9+	(18.8)	0.0158 34	647.53	7-	(M2)		7.27×10^3	115 25	B(M2)(W.u.)=0.14 4 I _{($\gamma+ce$}): from balance of I($\gamma+ce$) at 666 and 647.5 levels.
		293.72 9	3.9 2	372.64	6-	E3		0.254		B(E3)(W.u.)=0.37 3
		377.00 9	100 15	289.29	6-	E3		0.0994		B(E3)(W.u.)=1.64 19
										I _{γ} : normalized line in ¹⁴⁷ Sm(α ,p4n γ) dataset, Δ I γ =15 adopted by the evaluators based on experimental data.
690.71	2-	576.0 2	100 2	114.713	3-	M1		0.01634		
752.80		368.1		384.80	1-					
		522.6		230.23	2-					
802.36	8+	136.00 10	100	666.33	9 ⁺	M1		0.770		
805.97		421.2		384.80	1-					
920 56		575.7		230.23	2					
839.56		80.9		/52.80	2-					
014.2		624.0	100	230.23	∠ 6 ⁻					
214.∠ 1235.27	0 +	02 4 .9 432 01 10	100	209.29	8+	M1		0.0337		See general comment for the level scheme
1698 71	10+	463 46 18	100 11	1235 27	0+ 0+	M1		0.0337		See general comment for the level scheme
10/0./1	10	1032.5 3	57.6	666 33	9 ⁺	M1		0.0205		see general comment for the level scheme.
1768.70	11-	70.00 10	83 10	1698.71	10+	E1		0.739		$B(E1)(W.u.)=5.0\times10^{-5}$ 11

 $^{146}_{63}\mathrm{Eu}_{83}$ -4

 $^{146}_{63}\mathrm{Eu}_{83}$ -4

From ENSDF

					Adopted	Levels, Gammas	(continued)		
γ ⁽¹⁴⁶ Eu) (continued)									
E_i (level)	J_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α ^C	Comments		
1768.70	11-	966.21 17	20 3	802.36 8+	(E3) ^b	0.00610			
		1102.5 3	100 10	666.33 9+	(E3+M2) ^b	0.0063 19			
1882.83	9-	1080.5 2	100 8	802.36 8+	E1	9.38×10^{-4}			
		1216.1 5	76 11	666.33 9+	E1	7.90×10^{-4}			
1978.06	10-	95.2 2	100 8	1882.83 9-					
		209.4 2	35 ^{&} 3	1768.70 11-	M1	0.232			
2026.98	12^{-}	258.27 10		1768.70 11-	M1	0.1313			
2105.42	11+	1439.14 17	100	666.33 9+	E2	1.31×10^{-3}			
2540.06	(12^{+})	434.75 25	100 15	2105.42 11+	D+Q				
2665 99	(12+)	513.0	26.9	$2026.98 \ 12^{-1}$	M1	0.050			
2003.88	(13^{-})	125.82 <i>10</i> 639.0	24 12	$2340.00 (12^{\circ})$ $2026.08 12^{-1}$	IVI I	0.959			
2951.23	(14^{+})	285.45 15	100	$2665.88 (13^+)$	D+O				
3302.1	(14)	1275	100	2026.98 12-	2.4				
3469.8	(15^{+})	518.5 7	100	2951.23 (14+)	D+Q				
3509.1	(14)	558	100 <mark>&</mark> 11	2951.23 (14+)					
		843	50 <mark>&</mark> 6	2665.88 (13 ⁺)					
		1482	59 <mark>&</mark> 7	2026.98 12-					
3619.2	(15)	110	28 ^{&} 4	3509.1 (14)					
	(-)	149	52 <mark>&</mark> 6	3469.8 (15 ⁺)					
		317	02 0	3302.1 (14)					
		668	100 <mark>&</mark> 10	2951.23 (14+)					
3714.2	(15)	763	100	2951.23 (14+)					
3745.8	(16)	126	100	3619.2 (15)					
3782.0	(15)	831	100	2951.23 (14 ⁺)					
3911.2	(16)	197	<i>8</i> ,	3/14.2 (15)					
		292	100 10	3619.2 (15)					
1120.0	(1.6)	442	68 [°] 8	$3469.8 (15^+)$					
4120.0	(16)	338	100	3782.0 (15)					
4160.3	(17)	249	60 ^{°°} 6	3911.2 (16)					
		414	100 10	3745.8 (16)					
4170.8	(16)	389	88 ^{&} 10	3782.0 (15)					
		701	100 ^{&} 10	3469.8 (15 ⁺)					
4614.7	(18)	444	100 ^{&} 10	4170.8 (16)					
		454	54 ^{&} 5	4160.3 (17)					
		704	69 <mark>&</mark> 7	3911.2 (16)					
5022.5	(19)	408	100	4614.7 (18)					
5058.0	(18)	896 [‡]	100 ^{&} 11	4160.3 (17)		E	γ : poor fit, the energy level difference is equal to 897.69 22.		

S

$^{146}_{63}\mathrm{Eu}_{83}$ -5

From ENSDF

$\gamma(^{146}\text{Eu})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E_f	\mathbf{J}_f^{π}	Mult.	Comments
5058.0	(18)	1312	85 <mark>&</mark> 11	3745.8	(16)		
5169.3	(18)	1009	100	4160.3	(10) (17)		
5184.3	(20)	162	100	5022.5	(19)		
5372.3	(19)	1212	100	4160.3	(17)		
5486.0	(18)	1326	100	4160.3	(17)		
5525.6	(18)	468	74 ^{&} 11	5058.0	(18)		
		1365	100 2 11	4160.3	(17)		
5830.4	(19)	305	100 ^{&} 11	5525.6	(18)		
		772	33 ^{&} 4	5058.0	(18)		
5905.4	(20)	75	44 ^{&} 10	5830.4	(19)		
		736	78 ^{&} 7	5169.3	(18)		
		846 [‡]	66 <mark>&</mark> 7	5058.0	(18)		E_{γ} : poor fit, the energy level difference is equal to 847.39 22.
		883	100 <mark>&</mark> 10	5022.5	(19)		
		1745	34 & 5	4160.3	(17)		
6185.1	(21)	280	100 <mark>&</mark> 10	5905.4	(20)		
		1001	44 <mark>&</mark> 3	5184.3	(20)		
		1127	44 ^{&} 3	5058.0	(18)		
6345.3	(22)	1161	100	5184.3	(20)		
6350.7	(20)	520	100 <mark>&</mark> 11	5830.4	(19)		
		865	49 ^{&} 4	5486.0	(18)		
6689.1	(21)	784	100	5905.4	(20)		
6832.7	(21)	482	100	6350.7	(20)		
6980.9	(22)	292	100 10	6689.1	(21)		
		796	94 ^{x} 10	6185.1	(21)		
		1075	59 ^{x} 6	5905.4	(20)		
7535.9	(23)	555	100	6980.9	(22)		
8138.9	(24) (24)	603	100	7535.9	(23)		
8207.9	(21)	69 [#]	31& 10	8138.9	(23)		
0207.9	(23)	79 [#]	33 ^{&} 7	8128.9	(24)		
		672	$100^{\&}$ 15	7535.9	(23)		
8445.9	(26)	238	100 15	8207.9	(25)		
8649.9	(27)	204	100	8445.9	(26)	D,E2	Mult.: from RUL.
9166.9	(28)	517	100	8649.9	(27)		
10365.9	(29)	1199	100	9166.9	(28)		

$\gamma(^{146}\text{Eu})$ (continued)

- [†] Weighted average of ε decay, (p,2n γ), (α ,p4n γ) and (HI,xn γ) data, except as noted. If $\Delta E \gamma$ not given the evaluators have assumed $\Delta E \gamma = 0.3$.
- [‡] Energy of γ ray were not used for least-squares fit.
- [#] In fig. 1 of 1999Id01 this energy is given in figure brackets, the evaluators believe that it is calculated by the authors.
- [@] From ¹⁴⁷Sm(α ,p4n γ), except as noted.
- & Assuming multipolarities for the transitions according to the level pattern, calculated by the evaluators from $I(\gamma+ce)$ in (HI,xn γ) dataset which obtained from fig. 1 of 1999Id01. ^{*a*} From ¹⁴⁶Gd ε + β ⁺ decay.
- ^b From RUL.
- ^c Additional information 1.

^d If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{146}_{63}\rm{Eu}_{83}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁴⁶₆₃Eu₈₃

10

 $^{146}_{63}\mathrm{Eu}_{83}$ -10

From ENSDF

 $^{146}_{63}\mathrm{Eu}_{83}$ -10