¹⁴⁷Sm(p,2n γ) 1980Er04

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016

1980Er04: ¹⁴⁷Sm(p,2n γ), E=19-22 MeV; measured E γ , I γ , E(ce), Ice, T_{1/2} of isomer. ¹⁴⁶Eu; deduced levels, J^{π} , γ mult., configurations. Model calculations.

1980IsZZ: ¹⁴⁷Sm(p,2n γ), E not given; measured E γ , I γ , $\gamma\gamma$ coin. ¹⁴⁶Eu; deduced levels, J^{π} . 1962Re04: ¹⁴⁷Sm(p,2n γ), E=20.8 MeV; measured E γ , I γ (t), T_{1/2}. ¹⁴⁶Eu; deduced isomer.

The level scheme is from 1980Er04 and 1980IsZZ. γ lines of 274.9 and 358.2 are doublets; the energy difference between doublet members is <0.2 keV (1980Er04).

¹⁴⁶Eu Levels

E(level) ^{@&}	J ^π a	T _{1/2}	Comments
0.0^{\dagger}	4-		
14.5 [†] 3	5-		
114.73 25	3-		
230.2 4	2^{-}		
289.4 [†] 3	6-		
316.6 [‡] 3 331.07 25	5-		
372.7 [‡] <i>3</i>	6-		
384.7 5 497.8 5	1-		
647.6 [‡] 4	7-		
666.4 [#] 4 752.8 5 805.9 5 839.5 5 914.3 5	9+	239 μs 9	$T_{1/2}$: from γ (t); average of 240 μ s <i>10</i> (1962Re04) and 235 μ s 25 (1980Er04).

[†] Possible configuration= $\pi d_{5/2}^{-1} \times v f_{7/2}$ (1980Er04).

[±] Possible configuration= $\pi g_{7/2}^{-1} \times \nu f_{7/2}$ (1980Er04).

[#] Possible configuration= $\pi h_{11/2} \times \nu f_{7/2}$ (1980Er04).

[@] If $\Delta E\gamma$ not given, ±0.30 keV assumed for least-squares fitting.

[&] From a least-squares fit to $E\gamma$.

^a From 'Adopted Levels'.

$\gamma(^{146}\text{Eu})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α@	Comments
14.5	14.5	5-	0.0 4-	M1	83.9	α(L)=65.8 10; α(M)=14.26 20 α(N)=3.26 5; α(O)=0.515 8; α(P)=0.0504 7 $E_{\gamma}: γ$ ray was observed in ¹⁴² Nd(⁷ Li,3nγ) reaction (1980IsZZ).
(18.8)	666.4	9+	647.6 7-	[M2]	7.27×10^3	$\alpha(L)=5.55\times10^3 \ 8; \ \alpha(M)=1359 \ 19 \ \alpha(N)=313 \ 5; \ \alpha(O)=46.8 \ 7; \ \alpha(P)=3.37 \ 5$
56.0	372.7	6-	316.6 5-			
83.3	372.7	6-	289.4 6-			
86.9	839.5		752.8			
114.7	114.73	3-	$0.0 \ 4^{-}$	M1+E2	1.36 12	$\alpha(K)=0.93$ 13; $\alpha(L)=0.34$ 19; $\alpha(M)=0.08$ 5

Continued on next page (footnotes at end of table)

147 Sm(p,2n γ) 1980Er04 (continued)

$\gamma(^{146}\text{Eu})$ (continued)

E–5 <i>3</i> 5
E-5 3
=0.00285 4 $x(P)=1.033 \times 10^{-5}$ 15 rom 647.6 keV level, its nes less according to fig. 2
=0.00285 4 $x(P)=1.033\times10^{-5}$ 15
0.0188 <i>3</i> =1.482×10 ⁻⁵ <i>21</i>
0.001403 20 P)=5.11×10 ⁻⁶ 8 7.6 keV level, energy V (1980Er04).
0.001403 <i>20</i> P)=5.11×10 ⁻⁶ 8 7 level.
.00584 <i>9</i> P)=6.89×10 ⁻⁶ <i>10</i>
<pre>com 647.0 com 647.0 res less a =0.00285 x(P)=1.0 0.0188 3 =1.482×1 0.001403 P)=5.11× 7.6 keV V (1980F 0.001403 P)=5.11× 7 level00584 9 P)=6.89×</pre>

[†] From 1980Er04 and 1980IsZZ. $\Delta E\gamma$ =0.3 keV was assumed by evaluators for all γ 's.

[±] Doublet spacing was determined to be 0.121 keV 7 with bent crystal spectrometer (1986Bo23). [#] from $\alpha(\exp)$ (1980Er04); were normalized to $\alpha(K)(377\gamma, E3)=0.0668$ (with BrIcc calculated).

[@] Additional information 1.

