¹⁴⁷Sm(α ,p4n γ) 1988Er02

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016

Also 144 Sm(α ,d).

1988Er02,1980Er04: ¹⁴⁷Sm(α ,p4n γ), E=76 MeV; ¹⁴⁷Sm(p,2n γ), E=19 MeV; measured E γ , I γ , $\gamma(\theta)$, $\gamma\gamma$ coin, ce. ¹⁴⁶Eu; deduced levels, J^{π} , mult., configurations. Model calculations.

1988La18,1988GeZZ: ¹⁴⁴Sm(α ,d), E=218 MeV; measured Ed, σ (Ed, θ) at θ =3°-4°. ¹⁴⁶Eu; deduced levels, J^{π} , configuration. Synchrocyclotron, proportional chambers, ΔE detector, DWBA analysis.

The level scheme is from 1988Er02. Possible configurations are from 1988Er02.

¹⁴⁶Eu Levels

E(level) [†]	J ^{π#}	T _{1/2}	Comments						
0.0@	4-								
14.52 [@] 9	5-								
289.31 [@] 10	6-								
316.48 <mark>&</mark> 9	5-								
372.66 ^{&} 10	6-								
647.53 ^{&} 11	7-								
666.33 ^a 12	9+		E(level): also measured in (α,d) reaction.						
802.32 ^c 15	8+								
1235.22° 16	9+ 10+								
1698.63 ^a 16	10+								
1768.62° 16	11	4.5 ns 7	$T_{1/2}$: from $\gamma\gamma(t)$ in $T\gamma$ Sm(p,2n) of 1988Er02.						
1882.79° 21	(9)								
19/8.01° 22	$(10)^{-}$								
2026.92° 19 2105 54 [°] 23	12 ⁻ 11 ⁺		E(level): also measured in (α, d) reaction.						
$2103.34 \ 23$	11 12+								
2540.05 + 4	12								
$2005.8^{\circ} 4$	(14^+)								
3200	(14)								
3400									
3470.8f 6	(15^{+})								
4130 [‡]	(15)								
4130+									
[†] From a leas	st-squares	s fit to $E\gamma's$.							
* Measured i	n (α ,d) re	eaction only.							
[#] From 'Ado	pted Leve	els'.	(1000E.02)						
^w Possible configuration= $\pi d_{5/2}^{-1} \times v t_{7/2}$ (1988Er02).									
^{&} Possible co	^{\propto} Possible configuration= $\pi g_{7/2}^{-1} \times v f_{7/2}$ (1988Er02).								
^{<i>a</i>} Possible co	nfiguratio	$n = \pi h_{11/2} \times v$	f _{7/2} (1988Er02).						

possible configuration= $\pi h_{11/2} \times v f_{7/2} \times 3^-$ (1988Er02).

^c Possible configuration= $\pi d_{5/2}^{-1} \times v i_{13/2}^{*}$ (1988Er02).

^d Possible configuration= $\pi g_{7/2}^{-1} \times v i_{13/2}^{*}$ (1988Er02).

^e Possible configuration= $9^+ \times (\pi^{-2})_{2^+}$ (1988Er02). ^f Possible configuration= $9^+ \times (\pi d_{5/2}^{-1} \times g_{7/2}^{-1})_{6^+}$ (1988Er02).

					¹⁴⁷ S	m(α ,p4n γ) 198	88Er02 (co	ontinued)
γ ⁽¹⁴⁶ Eu)								
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α ^{&}	$I_{(\gamma+ce)}$	Comments
14.5 1	3 1	14.52	5-	0.0 4-	M1	83.9 21		$\alpha(\exp)=75\ 25$ $\alpha(L)=65.8\ 17;\ \alpha(M)=14.3\ 4$ $\alpha(N)=3.26\ 9;\ \alpha(O)=0.515\ 13;\ \alpha(P)=0.0504\ 13$ or uplus from I(a (a) belonce (1088E-02))
(18.8)		666.33	9+	647.53 7-	[M2]	7.27×10 ³	115 25	ce(L)/(γ +ce)=0.763 8; ce(M)/(γ +ce)=0.187 4 ce(N)/(γ +ce)=0.0431 9; ce(O)/(γ +ce)=0.00643 13; ce(P)/(γ +ce)=0.000463 10 α (L)=5.55×10 ³ 8; α (M)=1359 19 α (N)=313 5; α (O)=46.8 7; α (P)=3.37 5 I _(γ+ce) : from balance of I(γ +ce) at 666 and 647.5 levels
56.2 1	0.23 3	372.66	6-	316.48 5-				(1988Er02).
70.0 1	25 3	1768.62	11-	1698.63 10+	E1	≤1.5		$\alpha \le 1.5$ $\alpha(K)=0.615\ 9;\ \alpha(L)=0.0970\ 15;\ \alpha(M)=0.0209\ 3$ $\alpha(N)=0.00468\ 7;\ \alpha(O)=0.000690\ 10;\ \alpha(P)=4.88\times10^{-5}\ 7$ $\alpha:\ from\ I(\gamma+ce)\ balance\ (1988Er02).$ $A_2=-0\ 20\ 10$, $A_4=+0\ 00\ 20$
83.2 2	≤0.2	372.66	6-	289.31 6-				
95.2 [@] 2 125.8 <i>I</i>	4.0 <i>3</i> 41 <i>4</i>	1978.01 2665.8	$(10)^{-}$ 13 ⁺	1882.79 (9) ⁻ 2540.0 12 ⁺	M1	0.959		α (K)=0.812 <i>12</i> ; α (L)=0.1158 <i>17</i> ; α (M)=0.0250 <i>4</i> α (N)=0.00573 <i>9</i> ; α (O)=0.000909 <i>13</i> ; α (P)=8.98×10 ⁻⁵ <i>13</i> α : 0.4< α _{tot} <1.1 from I(γ +ce) balance (1988Er02).
136.0 <i>1</i>	34 3	802.32	8+	666.33 9+	M1	0.770		A ₂ =-0.15 2, A ₄ =-0.05 3. α (K)exp=0.63 6 α (K)=0.651 10; α (L)=0.0928 14; α (M)=0.0201 3 α (N)=0.00459 7; α (O)=0.000728 11; α (P)=7.20×10 ⁻⁵ 11 A ₂ =-0.15 3, A ₄ =-0.01 4.
209.4 [@] 2	1.4 <i>I</i>	1978.01	(10)-	1768.62 11-	M1	0.232		$\alpha(K) = 0.1956, n_4 = 0.0171, \alpha(K) = 0.0187, \alpha(K) = 0.005996, \alpha(K) = 0.00137320; \alpha(O) = 0.0002184; \alpha(P) = 2.16 \times 10^{-5}3$
258.3 1	61 6	2026.92	12-	1768.62 11-	M1	0.1312		$\begin{aligned} \alpha(\mathbf{K}) &= 0.146, \ 144 = 0.00522, \\ \alpha(\mathbf{K}) &= 0.146 \\ \alpha(\mathbf{K}) &= 0.1113 \ 16; \ \alpha(\mathbf{L}) &= 0.01563 \ 22; \ \alpha(\mathbf{M}) &= 0.00337 \ 5 \\ \alpha(\mathbf{N}) &= 0.000773 \ 11; \ \alpha(\mathbf{O}) &= 0.0001227 \ 18; \ \alpha(\mathbf{P}) &= 1.222 \times 10^{-5} \ 18 \\ \mathbf{A}_{22} &= -0.212, \ \mathbf{A}_{4} &= -0.012. \end{aligned}$
274.76 5	170 <i>16</i>	289.31	6-	14.52 5-	M1	0.1112		α (K)exp=0.095 9 α (K)=0.0943 14; α (L)=0.01323 19; α (M)=0.00285 4 α (N)=0.000653 10; α (O)=0.0001038 15; α (P)=1.035×10 ⁻⁵ 15 α : for doublet line. E _y : doublet with 274.8 γ , I γ =32 16 from 647.5 keV level. A ₂ =-0.040 2, A ₄ =+0.001 2.
274.89 7	32 16	647.53	7-	372.66 6-	M1	0.1110		α (K)exp=0.095 $\vec{9}$

2

From ENSDF

							$\gamma(^1$	⁴⁶ Eu) (continued)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments
								$\alpha(K)=0.0942 \ 14; \ \alpha(L)=0.01321 \ 19; \ \alpha(M)=0.00285 \ 4$ $\alpha(N)=0.000653 \ 10; \ \alpha(O)=0.0001037 \ 15; \ \alpha(P)=1.034\times10^{-5} \ 15$ $\alpha: \text{ for doublet line.}$ $E_{\gamma}: \text{ doublet with } 274.76\gamma, \ I_{\gamma}=170 \ 16 \ \text{from } 289.3 \ \text{keV level.} \ A_2=-0.040 \ 2,$ $A_4=+0.001 \ 2$
285.5 1	60 6	2951.3	(14^{+})	2665.8	13+	D+Q		$A_2 = -0.07 \ 2, \ A_4 = -0.00 \ 3.$
293.7 1	3.9 2	666.33	9+	372.66	6-	E3	0.254	α (K)exp=0.15 3; K/L=1.8 4 α (K)=0.1502 21; α (L)=0.0798 12; α (M)=0.0188 3 α (N)=0.00420 6; α (O)=0.000590 9; α (P)=1.482×10 ⁻⁵ 21 $\Delta_{0} = -0.04$ 6 $\Delta_{1} = -0.06$ 8
316.5 1	2.3 2	316.48	5-	0.0	4-	M1	0.0763	$\begin{array}{l} \alpha(K) = 0.066, \ M4 = 0.0005, \\ \alpha(K) = 0.0668, \ \alpha(K) = 0.00905, \ 13; \ \alpha(M) = 0.00195, 3 \\ \alpha(N) = 0.000447, \ 7; \ \alpha(O) = 7.10 \times 10^{-5}, \ 10; \ \alpha(P) = 7.09 \times 10^{-6}, \ 10 \\ A_{2} = -0.05, \ L_{2} = -0.01, \ L_{2} \end{array}$
358.2 1	36 18	372.66	6-	14.52	5-	M1	0.0551	$\alpha(K) = 0.048 5$ $\alpha(K) = 0.0468 7; \ \alpha(L) = 0.00651 \ 10; \ \alpha(M) = 0.001403 \ 20$ $\alpha(N) = 0.000321 \ 5; \ \alpha(O) = 5.11 \times 10^{-5} \ 8; \ \alpha(P) = 5.11 \times 10^{-6} \ 8$ $\alpha: \text{ for doublet line.}$
358.2 1	75 18	647.53	7-	289.31	6-	M1	0.0551	E_{γ} : doublet with 538.2 γ , $I\gamma = 75$ 78 from 647.5 keV level. $A_2 = -0.039$ 5, $A_4 = +0.001$ 4 α (K)exp=0.048 5 α (K)=0.0468 7; α (L)=0.00651 10; α (M)=0.001403 20 α (N)=0.000321 5; α (O)=5.11×10 ⁻⁵ 8; α (P)=5.11×10 ⁻⁶ 8 α : for doublet line. E : doublet with 358 2 γ by =36.18 from 372.7 keV level $A_{2} = -0.039$ 3. $A_{3} = \pm 0.001$ 4
377.0 1	100	666.33	9+	289.31	6-	E3	0.0994	K_{2} = 0.055 5, R_{4} = 0.001 4 K/L=2.5 2 $\alpha(K)=0.0668$ 10; $\alpha(L)=0.0252$ 4; $\alpha(M)=0.00584$ 9 $\alpha(N)=0.001312$ 19; $\alpha(O)=0.000188$ 3; $\alpha(P)=6.89\times10^{-6}$ 10 $A_{2}=+0.00$ 1
432.9 1	48 9	1235.22	9+	802.32	8+	M1	0.0337	$\begin{array}{l} \alpha(K) = 0.029 \ 4 \\ \alpha(K) = 0.0287 \ 4; \ \alpha(L) = 0.00396 \ 6; \ \alpha(M) = 0.000854 \ 12 \\ \alpha(N) = 0.000196 \ 3; \ \alpha(O) = 3.11 \times 10^{-5} \ 5; \ \alpha(P) = 3.12 \times 10^{-6} \ 5 \\ A_{2} = -0.13 \ 3; \ A_{4} = +0.04 \ 3 \end{array}$
434.5 <i>3</i> 463.4 <i>1</i>	57 9 35 4	2540.0 1698.63	12 ⁺ 10 ⁺	2105.54 1235.22	11 ⁺ 9 ⁺	D+Q M1	0.0283	$\begin{array}{l} A_{2} = +0.03 \ 3, \ A_{4} = +0.04 \ 4, \\ \alpha(\text{K}) \exp = 0.025 \ 7 \\ \alpha(\text{K}) = 0.0241 \ 4; \ \alpha(\text{L}) = 0.00332 \ 5; \ \alpha(\text{M}) = 0.000715 \ 10 \\ \alpha(\text{N}) = 0.0001639 \ 23; \ \alpha(\text{O}) = 2.61 \times 10^{-5} \ 4; \ \alpha(\text{P}) = 2.62 \times 10^{-6} \ 4 \\ A_{2} = -0.09 \ 4, \ A_{4} = -0.01 \ 5. \end{array}$
513 <i>I</i> 519.5 <i>4</i>	15 5 30 8	2540.0 3470.8	12^+ (15 ⁺)	2026.92 2951.3	12 ⁻ (14 ⁺)	D+Q		$A_2 = -0.10 \ I0, \ A_4 = +0.10 \ I2.$
639 <i>1</i> 966.3 <i>3</i>	10 5 6 1	2665.8 1768.62	13^{+} 11^{-}	2026.92 802.32	12 ⁻ 8 ⁺	(E3)	0.00610	$\alpha(K)=0.00500\ 7;\ \alpha(L)=0.000854\ 12;\ \alpha(M)=0.000188\ 3$ $\alpha(N)=4\ 28\times10^{-5}\ 6;\ \alpha(Q)=6\ 61\times10^{-6}\ 10;\ \alpha(P)=5\ 41\times10^{-7}\ 8$

ω

147 Sm(α ,p4n γ) 1988Er02 (continued)								
$\gamma(^{146}\text{Eu})$ (continued)								
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α &	Comments
1032.3 2	20 2	1698.63	10+	666.33	9+	M1	0.00394	A ₂ =+0.51 2 <i>I</i> , A ₄ =+0.13 20. Mult.: from isomeric transition rates (1988Er02). α (K)exp=0.0038 9 α (K)=0.00336 5; α (L)=0.000451 7; α (M)=9.68×10 ⁻⁵ 14 α (N)=2.22×10 ⁻⁵ 4; α (O)=3.53×10 ⁻⁶ 5; α (P)=3.60×10 ⁻⁷ 5 A ₂ =+0.20 8, A ₄ =0.05 10.
1080.5 [@] 2	3.7 3	1882.79	(9)-	802.32	8+	E1	9.38×10^{-4}	$\alpha(K) \exp[=0.00097 25]$
1102.3 2	30 <i>3</i>	1768.62	11-	666.33	9+	(E3+M2)	0.0063 19	$\begin{aligned} &\alpha(\mathbf{K})=0.000806\ 12;\ \alpha(\mathbf{L})=0.0001041\ 15;\ \alpha(\mathbf{M})=2.22\times10^{-5}\ 4\\ &\alpha(\mathbf{N})=5.08\times10^{-6}\ 8;\ \alpha(\mathbf{O})=8.05\times10^{-7}\ 12;\ \alpha(\mathbf{P})=8.07\times10^{-8}\ 12\\ &A_2=-0.27\ 14,\ A_4=-0.19\ 20.\\ &\alpha(\mathbf{K})=0.0053\ 17;\ \alpha(\mathbf{L})=0.00079\ 20;\ \alpha(\mathbf{M})=0.00017\ 5\\ &\alpha(\mathbf{N})=3.9\times10^{-5}\ 10;\ \alpha(\mathbf{O})=6.2\times10^{-6}\ 16;\ \alpha(\mathbf{P})=5.9\times10^{-7}\ 20;\ \alpha(\mathbf{IPF})=5.7\times10^{-8}\\ &3\end{aligned}$
								$A_2 = -0.10 \ 6, A_4 = -0.16 \ 8.$ Mult : from isomeric transition rates (1988Er02)
1216.1 [@] 5	2.8 4	1882.79	(9)-	666.33	9+	E1	7.90×10 ⁻⁴	$\alpha(K) \exp\{-0.001 \\ \alpha(K) = 0.000651 \ 10; \ \alpha(L) = 8.37 \times 10^{-5} \ 12; \ \alpha(M) = 1.79 \times 10^{-5} \ 3 \\ \alpha(N) = 4.08 \times 10^{-6} \ 6; \ \alpha(O) = 6.48 \times 10^{-7} \ 9; \ \alpha(P) = 6.53 \times 10^{-8} \ 10; \\ \alpha(IPE) = 3.24 \times 10^{-5} \ 5$
1439.2 2	59 6	2105.54	11+	666.33	9+	E2	1.31×10 ⁻³	$ α(\mathbf{R}^{-1})=2.2\times10^{-5} \text{ S} $ $ α(\mathbf{K})=0.001074 \ 15; \ α(\mathbf{L})=0.0001454 \ 21; \ α(\mathbf{M})=3.12\times10^{-5} \ 5 $ $ α(\mathbf{N})=7.14\times10^{-6} \ 10; \ α(\mathbf{O})=1.129\times10^{-6} \ 16; \ α(\mathbf{P})=1.107\times10^{-7} \ 16; $ $ α(\mathbf{IPF})=5.52\times10^{-5} \ 8 $ Mult.: $ΔJ=2$, stretched Q(E2) from A ₂ =+0.28 4, A ₄ =-0.08 5.

4

[†] From 1988Er02. [‡] From 1988Er02. I γ 's are normalized to I γ (377, E3, 9⁺ \rightarrow 6⁻)=100 corresponding to 230 decays of 9⁺ isomer (1988Er02). [#] From α (exp), $\gamma(\theta)$ from (p,2n) of 1988Er02 and RUL; α 's were normalized to α (K)(377 γ , E3)=0.0668 (from BrIcc). [@] From ¹⁴⁷Sm(p,2n) reaction (1988Er02).

[&] Additional information 1.

 $^{146}_{63}\mathrm{Eu}_{83}$ -4

¹⁴⁶₆₃Eu₈₃