(HI,xnγ) 2001Ro15

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016

¹⁴⁶Dy Levels

2001Ro15: ⁹²Mo(⁵⁸Ni,4p), E=260 MeV; measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO). ¹⁴⁶Dy; deduced high-spin levels, J^{π} ,

configurations. Comparison with shell model predictions. Tandem, NORDBALL array, efficient particle selection system. 1992De23: 90 Zr(58 Ni,2p), E=250 MeV; 112 Sn(35 Cl,p), E=160 MeV; measured $\gamma\gamma$, γ (recoil) coin., DCO. 146 Dy; deduced levels, J^{π} , γ branching. Tandem, recoil mass-spectrometer, Compton suppressed Ge detectors.

 J^{α} , γ branching. Tandeni, recon mass-spectrometer, Compton's Other: 1982Gu07.

The level scheme is as proposed by 2001Ro15.

J**π**‡ $J^{\pi \ddagger}$ E(level) $J^{\pi \ddagger}$ E(level) $T_{1/2}$ E(level) 0 0^{+} 4262.5[&] 5 11^{-} 6183.7 5 (16)682.50[@] & 20 4472.2[&] 5 2^{+} 12^{-} 6258.2 5 17^{-} 1607.61[@] *23* 4847.6[&] 5 4^{+} 13-6323.7 5 17^{-} 1783.0^{@&} 3 3-4848.5 5 13^{+} 6369.67 17^{-} 2281.10^{@&} 24 5011.1[&] 5 5- 14^{-} 6466.08 18^{-} 5064.7 5 2458.1 4 (5) 13^{-} 6562.7 5 17^{+} 2517.7[@] *&* 4 7-5153.3[&] 5 14^{+} 6576.0 6 18^{-} 2634.7[&] 4 6+ 5259.06 13^{+} 6717.3 6 17^{-} 2804.9 6 5268.5 5 14^{-} 6722.7 6 18^{-} (6,7) 2806.9[@] 4 7-5327.5 6 14^{-} 6892.4 6 18^{+} 5331.2[&] 5 2807.2 6 15^{-} 6923.2 6 18^{+} 2934.1#@& 4 150 ms 20 10^{+} 5376.5 5 14^{+} 7035.5 6 19^{-} 2985.6[&] 4 (8^+) 5417.4 5 7187.96 15^{-} 19^{+} 3091.2 6 $(7,9^{-})$ 5550.3 5 15^{-} 7260.9 6 $(19)^{+}$ 3159.6[&] 4 8-5731.3 7 15^{-} 7266.7 5 18^{-} 5741.1[&] 5 3299.7 6 7278.5 6 $(7,8^+)$ 16- 18^{-} 3336.0 5 5808.08 7423.7 6 $(7,8^+)$ 15,16 19-3338.1 5 (8^{-}) 5857.8 10 14^{+} 7444.7 7 $(19)^{-}$ 19-3438.3 4 9-5919.4 6 7500.8 6 3630.0 % 5 11^{+} 5931.4 5 16^{-} 7740.5 7 20^{-} 3691.4 7 15^{+} $(9,11^{-})$ 5980.9 5 7790.2 7 20^{-}

5983.2 8

6045.6 6

6114.2 5

6092.1^{*a*} 5

[†] From a least-squares fit to $E\gamma$'s, normalized $\chi^2=0.8$.

[‡] Mostly based on value of DCO= $2 \times I\gamma(143^{\circ})/[I\gamma(79^{\circ})+I\gamma(101^{\circ})]$, generally expected E2 crossover transitions, also shell model calculations and systematics for N=80 even-even nuclei (2001Ro15).

(16)

 15^{+}

 16^{+}

16-

7942.4 7

8057.7 7

8508.5 8

8886.09

 21^{-}

 21^{-}

 22^{-}

 23^{-}

[#] $T_{1/2}$ from $I\gamma(t)$ (1982Gu07).

9-

 10^{-}

 12^{+}

11-

3768.9 6

3898.2 5

4194.0 5

4026.1[&] 5

[@] Suggested also in 1982Gu07.

& Suggested also in 1992De23.

^{*a*} The level decays by 760.5 γ 3 to 5351.2 5, $J^{\pi}=15^{-}$ level and 939.7 γ 2 to 5153.3 5, $J^{\pi}=14^{+}$ level (2001Ro15). The levels of 6094 and 6095 keV were introduced in 1992De23, they decay by 761 γ and 939 γ to 5333 and 5155, $J^{\pi}=14^{+}$ levels, correspondingly; the evaluators take them for one level.

$\gamma(^{146}\text{Dy})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^{<i>a</i>}	Comments
68.6 <i>3</i> 100.5 <i>3</i>	5 <i>1</i> 2 <i>1</i>	6114.2 3438.3	16 ⁻ 9 ⁻	6045.6 3338.1	$\frac{15^{+}}{(8^{-})}$			DCO=0.9 1.
117.5 5	4 1	5376.5	14+	5259.0	13+	M1	1.51 3	α (K)=1.271 24; α (L)=0.187 4; α (M)=0.0410 8 α (N)=0.00949 18; α (O)=0.00139 3; α (P)=7.92×10 ⁻⁵ 15
127.0 <i>3</i>	0.9 9	2934.1	10+	2806.9	7-	E3	13.34 25	$\begin{array}{l} DCO=1.2 \ 3.\\ \alpha(K)=2.16 \ 4; \ \alpha(L)=8.51 \ 17; \ \alpha(M)=2.13 \ 5\\ \alpha(N)=0.481 \ 10; \ \alpha(O)=0.0569 \ 11; \ \alpha(P)=0.0001219\\ 20 \end{array}$
		<i></i>						$E_{\gamma},I_{\gamma},Mult.$: from 1982Gu07; I γ normalized to 2001Ro15.
133.3 4	6 I 5 I	6114.2 7423 7	16 ⁻ 10 ⁻	5980.9	15 ⁺ 18 ⁻	M1	0.826	DCO=0.5 <i>I</i> . $\alpha(K)=0.695$ <i>II</i> : $\alpha(I)=0.1018$ <i>I</i> 6: $\alpha(M)=0.0224$ <i>A</i>
1-1-1-1-5	51	1723.1	17	1210.5	10	1011	0.020	$\alpha(R)=0.00517 \ 8; \ \alpha(O)=0.000757 \ 12; \ \alpha(P)=4.33\times10^{-5} \ 7 \ DCO=0.6 \ l$
149.1 <i>3</i>	14 2	5417.4	15-	5268.5	14-	M1	0.769	$\begin{array}{l} \alpha(\mathbf{K}) = 0.648 \ 10; \ \alpha(\mathbf{L}) = 0.0948 \ 15; \ \alpha(\mathbf{M}) = 0.0208 \ 4\\ \alpha(\mathbf{N}) = 0.00482 \ 8; \ \alpha(\mathbf{O}) = 0.000705 \ 11; \\ \alpha(\mathbf{P}) = 4.03 \times 10^{-5} \ 6\\ \mathbf{D} \mathbf{C} \mathbf{O} = 0.71 \ 7 \end{array}$
163.5 <i>3</i>	8 2	5011.1	14-	4847.6	13-	M1	0.594	$\begin{array}{l} \alpha(\mathrm{K})=0.501 \; \delta; \; \alpha(\mathrm{L})=0.0731 \; 11; \; \alpha(\mathrm{M})=0.01606 \; 24 \\ \alpha(\mathrm{N})=0.00371 \; \delta; \; \alpha(\mathrm{O})=0.000544 \; 9; \\ \alpha(\mathrm{P})=3.11\times10^{-5} \; 5 \end{array}$
173 8 2	10.2	5550.3	15-	5376 5	14^{+}			DCO=1.0 <i>1</i> . DCO=0.68 <i>7</i>
$178.3^{\#}.3$	$3.3^{\#} 6$	5919.4	15	5741.1	16-			I_{ν} : for the doublet of 178.8+178.3. $I_{\nu}=8$ <i>l</i> .
178.8 [#] 3	4.7 [#] 9	2985.6	(8+)	2806.9	7-	(E1) [@]	0.0653	$\alpha(K)=0.0551 \ 8; \ \alpha(L)=0.00805 \ 12; \ \alpha(M)=0.00176 \ 3$ $\alpha(N)=0.000402 \ 6; \ \alpha(O)=5.64\times10^{-5} \ 9;$ $\alpha(P)=2.75\times10^{-6} \ 4$
201.0.2	0.2	7042.4	01-	7740.5	20-			I_{γ} : for the doublet of 178.8+178.3, I_{γ} =8 <i>I</i> . DCO=0.65 <i>8</i> .
201.9 2 203.8 3	92 71	7942.4 5268.5	$\frac{21}{14^{-}}$	5064.7	13^{-}	M1	0.322	$\alpha(K)=0.272$ 4; $\alpha(L)=0.0395$ 6; $\alpha(M)=0.00868$ 13
20010 0	, 1	020010		200117	10		0.022	$\alpha(N) = 0.00201 \ 3; \ \alpha(O) = 0.000294 \ 5; \ \alpha(P) = 1.686 \times 10^{-5} \ 25$
209.5 [#] 3	12 [#] 2	6323.7	17-	6114.2	16-	M1	0.299	$\alpha(K)=0.252 \ 4; \ \alpha(L)=0.0366 \ 6; \ \alpha(M)=0.00804 \ 12 \\ \alpha(N)=0.00186 \ 3; \ \alpha(O)=0.000272 \ 4; \\ \alpha(P)=1.562 \times 10^{-5} \ 23$
								I_{γ} : for the doublet of 209.8+209.5, I_{γ} =40 6.
209.8 [#] 3	28 [#] 5	4472.2	12-	4262.5	11-	M1	0.298	α (K)=0.251 4; α (L)=0.0365 6; α (M)=0.00801 12 α (N)=0.00185 3; α (O)=0.000271 4; α (P)=1.556×10 ⁻⁵ 23
								I_{γ} : for the doublet of 209.8+209.5, I_{γ} =40 6.
223 2 5	21	5376 5	14^{+}	5153 3	14+			DCU=0./1 4.
231.6 2	17 3	6323.7	17-	6092.1	16+	(E1) [@]	0.0332	$\alpha(K)=0.0280$ 4; $\alpha(L)=0.00403$ 6; $\alpha(M)=0.000880$
201.0 2	1, 5	0525.7	1,	0072.1	10	(21)	0.0002	$\begin{array}{l} a(\mathbf{R}) & 0.0200 \ \ r, \ a(\mathbf{L}) & 0.00100 \ \ 0, \ a(\mathbf{R}) & 0.000000 \\ I3 \\ \alpha(\mathbf{N})=0.000201 \ \ 3; \ \alpha(\mathbf{O})=2.85\times10^{-5} \ \ 4; \\ \alpha(\mathbf{P})=1.442\times10^{-6} \ \ 21 \\ \mathbf{PCO} & 0.025 \end{array}$
234.1 2	17 3	7500.8	19-	7266.7	18-	M1	0.220	$\alpha(K)=0.093.$ $\alpha(K)=0.1863; \alpha(L)=0.02704; \alpha(M)=0.005929$ $\alpha(N)=0.00136920; \alpha(O)=0.0002013;$

γ (¹⁴⁶Dy) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{a}	Comments
								α (P)=1.152×10 ⁻⁵ <i>17</i> DCO=0.77 <i>6</i> .
236.4 [#] 3	2.2 [#] 9	4262.5	11-	4026.1	12^{+}			I_{γ} : for the doublet of 236.7+236.4, I_{γ} =44 7.
236.7 [#] 3	42 [#] 7	2517.7	7-	2281.10	5-	E2	0.1360	$\alpha(K)=0.0963 \ 14; \ \alpha(L)=0.0307 \ 5; \ \alpha(M)=0.00714$
								α (N)=0.001615 24; α (O)=0.000208 3; α (P)=4.78×10 ⁻⁶ 7
								I_{γ} : for the doublet of 236.7+236.4, I_{γ} =44 7.
239.7 3	13 2	7740.5	20-	7500.8	19-	M1	0.207	$\alpha(K)=0.174 \ 3; \ \alpha(L)=0.0253 \ 4; \ \alpha(M)=0.00555 \ 8 \ \alpha(N)=0.001283 \ 19; \ \alpha(O)=0.000188 \ 3;$
								$\alpha(P)=1.080\times10^{-5}$ 16 DCO=0.89 8.
251.9 [#] 3	3.3 [#] 9	5983.2	(16)	5731.3	15-			I_{γ} : for the triplet of 251.9+252.3+252.6, I_{γ} =11 2.
252.3 [#] 3	4.3 [#] 11	6576.0	18-	6323.7	17-	M1	0.180	$\alpha(K)=0.1518\ 22;\ \alpha(L)=0.0220\ 4;\ \alpha(M)=0.00482\ 7$ $\alpha(N)=0.001115\ 16;\ \alpha(O)=0.0001634\ 24;$ $\alpha(P)=9.39\times10^{-6}\ 14$
								I_{γ} : for the triplet of 251.9+252.3+252.6, I_{γ} =11 2. DCO=0.66 7.
252.6 [#] 3	3.3 [#] 9	6183.7	(16)	5931.4	16-			I_{γ} : for the triplet of 251.9+252.3+252.6, I_{γ} =11 2.
257.5 2	8 1	5268.5	14-	5011.1	14-	&		DCO=1.6 2.
264.7 2	4 1	7187.9	19+	6923.2	18+	M1	0.1580	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1334 \ 19; \ \alpha(\mathbf{L}) = 0.0193 \ 3; \ \alpha(\mathbf{M}) = 0.00423 \ 6 \\ &\alpha(\mathbf{N}) = 0.000978 \ 14; \ \alpha(\mathbf{O}) = 0.0001434 \ 21; \\ &\alpha(\mathbf{P}) = 8.25 \times 10^{-6} \ 12 \end{aligned}$
267.5.2	12.2	0057 7	01-	7700.0	20-	M	0.1526	DCO=0.7 2.
267.5 2	13 2	8057.7	21	7790.2	20	MI	0.1536	$\begin{array}{l} \alpha(\mathbf{K}) = 0.1296 \ I9; \ \alpha(\mathbf{L}) = 0.0187 \ 3; \ \alpha(\mathbf{M}) = 0.00411 \ 6\\ \alpha(\mathbf{N}) = 0.000950 \ I4; \ \alpha(\mathbf{O}) = 0.0001393 \ 20; \\ \alpha(\mathbf{P}) = 8.01 \times 10^{-6} \ I2 \end{array}$
278.6 2	11 2	3438.3	9-	3159.6	8-	M1	0.1377	DCO=0.73 8. α (K)=0.1162 17; α (L)=0.01677 24; α (M)=0.00368 6
								α (N)=0.000851 <i>I2</i> ; α (O)=0.0001248 <i>I8</i> ; α (P)=7.18×10 ⁻⁶ <i>II</i> DCO=0.61 <i>9</i> .
289.0 2	19 <i>3</i>	2806.9	7^{-}	2517.7	7-	&		DCO=1.4 <i>1</i> .
295.6 3	5 1	7187.9	19+	6892.4	18+	M1	0.1175	α (K)=0.0992 <i>15</i> ; α (L)=0.01429 <i>21</i> ; α (M)=0.00313 5
								α (N)=0.000725 <i>11</i> ; α (O)=0.0001063 <i>16</i> ; α (P)=6.12×10 ⁻⁶ <i>9</i> DCO=0.7 <i>1</i> .
316.4 4	4 1	5327.5	14-	5011.1	14-	&		DCO=1.7 4.
320.1 1	31 5	5331.2	15-	5011.1	14-	M1	0.0950	α (K)=0.0803 <i>12</i> ; α (L)=0.01154 <i>17</i> ; α (M)=0.00253 4
								α (N)=0.000585 9; α (O)=8.58×10 ⁻⁵ 12; α (P)=4.95×10 ⁻⁶ 7
323.7 1	14 2	5741.1	16-	5417.4	15-	M1	0.0922	$\alpha(\text{K})=0.0779 \ 11; \ \alpha(\text{L})=0.01119 \ 16; \ \alpha(\text{M})=0.00245$
								α (N)=0.000568 8; α (O)=8.33×10 ⁻⁵ 12; α (P)=4.80×10 ⁻⁶ 7
320.8.3	71	6892 /	18+	6562.7	17+			DCO=0.71 6. DCO=0.80.7
337.7 3	21	7260.9	$(19)^+$	6923.2	18^{+}			200-0.007.

γ ⁽¹⁴⁶Dy) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f .	\mathbf{J}_{f}^{π}	Mult. [‡]	α ^{<i>a</i>}	Comments
346.8 <i>4</i> 350.9 <i>2</i> 352.5 <i>2</i>	2 <i>1</i> 8 <i>1</i> 9 2	2804.9 2985.6 3159.6	(6,7) (8 ⁺) 8 ⁻	2458.1 (3 2634.7 6 2806.9 7	5) 5+ 7-			
360.5 2	15 3	6923.2	18+	6562.7 1	7+	M1	0.0694	α (K)=0.0587 9; α (L)=0.00840 12; α (M)=0.00184 3 α (N)=0.000426 6; α (O)=6.25×10 ⁻⁵ 9; α (P)=3.61×10 ⁻⁶ 5
366.5 [#] 3	8.3 [#] 13	7790.2	20-	7423.7 1	9-	M1	0.0664	$\alpha(K)=0.0562 \ 8; \ \alpha(L)=0.00804 \ 12; \ \alpha(M)=0.001761$
								²⁵ α (N)=0.000407 6; α (O)=5.98×10 ⁻⁵ 9; α (P)=3.45×10 ⁻⁶ 5 I_{γ} : for the doublet of 368.4+366.5, I_{γ} =13 2. DCO=0.66 8.
368.4 [#] 3	4.7 [#] 10	7260.9	(19)+	6892.4 1	8+			I_{γ} : for the doublet of 368.4+366.5, I_{γ} =13 2.
375.5 [#] 4	16.1 [#] 16	4847.6	13-	4472.2 1	2-	M1	0.0623	$\alpha(K)=0.0527 \ 8; \ \alpha(L)=0.00754 \ 11; \ \alpha(M)=0.001651 \ 24$
								α (N)=0.000382 6; α (O)=5.61×10 ⁻⁵ 8; α (P)=3.24×10 ⁻⁶ 5
								I_{γ} : for the doublet of 375.5+377.5, $I_{\gamma}=21$ 2. DCO=0.90 7.
377.5 [#] 4 395.7 5	4.9 [#] 9 21 <i>3</i>	8886.0 4026.1	23 ⁻ 12 ⁺	8508.5 2 3630.0 1	22^{-} 1 ⁺	M1	0.0544	I_{γ} : for the doublet of 375.5+377.5, I_{γ} =21 2. α (K)=0.0460 7; α (L)=0.00656 10; α (M)=0.001437 21
								α (N)=0.000333 5; α (O)=4.88×10 ⁻⁵ 7; α (P)=2.82×10 ⁻⁶ 4 DCO=0.63 5.
397.5 [#] 5	2.8 [#] 9	5550.3	15^{-}	5153.3 1	4+			I_{γ} : for the doublet of 397.5+398.5, $I_{\gamma}=21$ 3.
398.5 [#] 5	18.2 [#] 8	6722.7	18-	6323.7 1	7-	M1	0.0534	$\alpha(K)=0.0451$ 7; $\alpha(L)=0.00644$ 10; $\alpha(M)=0.001411$ 21
								$\alpha(N)=0.000326 5; \alpha(O)=4.79\times10^{-5}7; \alpha(P)=2.77\times10^{-6} 4$ I _γ : for the doublet of 397.5+398.5, I _γ =21 3.
403.8 4	4 1	5731.3	15-	5327.5 1	4-	M1	0.0516	$\alpha(K)=0.0436$ 7; $\alpha(L)=0.00622$ 9; $\alpha(M)=0.001363$ 20
								α (N)=0.000315 5; α (O)=4.63×10 ⁻⁵ 7; α (P)=2.68×10 ⁻⁶ 4
406.3 1	26 4	5417.4	15-	5011.1 1	4-	M1	0.0507	DCO=0.5 <i>I</i> . $\alpha(K)=0.0429$ 6; $\alpha(L)=0.00612$ 9; $\alpha(M)=0.001341$ <i>19</i>
								α (N)=0.000310 5; α (O)=4.55×10 ⁻⁵ 7; α (P)=2.63×10 ⁻⁶ 4
409.8 2	13 2	5741.1	16-	5331.2 1	5-	M1	0.0496	$\alpha(K)=0.0420$ 6; $\alpha(L)=0.00599$ 9; $\alpha(M)=0.001311$ 19
								$\alpha(N)=0.000303 5; \alpha(O)=4.45\times10^{-5} 7; \alpha(P)=2.58\times10^{-6} 4$
416.5 3	19 6	2934.1	10+	2517.7 7	7-	(E3)	0.0799	$\alpha(K)=0.0532 \ 8; \ \alpha(L)=0.0206 \ 3; \ \alpha(M)=0.00488 \ 7 \ \alpha(N)=0.001109 \ 16; \ \alpha(O)=0.0001434 \ 21;$
								α (P)=3.22×10 ^{-o} 5 E _{γ} ,I _{γ} ,Mult.: from 1982Gu07; I γ normalized to 2001Ro15.

γ (¹⁴⁶Dy) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{a}	Comments
420.9 3	11 2	5268.5	14-	4847.6	13-	M1	0.0463	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0392 \ 6; \ \alpha(\mathbf{L}) = 0.00558 \ 8; \ \alpha(\mathbf{M}) = 0.001222 \ 18 \\ &\alpha(\mathbf{N}) = 0.000283 \ 4; \ \alpha(\mathbf{O}) = 4.15 \times 10^{-5} \ 6; \\ &\alpha(\mathbf{P}) = 2.40 \times 10^{-6} \ 4 \end{aligned}$
438.2 5	5 1	6369.6	17-	5931.4	16-	M1	0.0417	DCO=0.9 <i>1</i> . $\alpha(K)=0.0353 5; \alpha(L)=0.00502 8; \alpha(M)=0.001099 16$ $\alpha(N)=0.000254 4; \alpha(O)=3.73\times10^{-5} 6;$ $\alpha(P)=2.16\times10^{-6} 3$ DCO=0.9 3.
446.0 <i>1</i>	53 5	4472.2	12-	4026.1	12+	(E1) ^{@&}	0.00665	$\alpha(K)=0.00565 \ 8; \ \alpha(L)=0.000782 \ 11; \alpha(M)=0.0001703 \ 24 \alpha(N)=3.92\times10^{-5} \ 6; \ \alpha(O)=5.64\times10^{-6} \ 8; \alpha(P)=3.07\times10^{-7} \ 5 DCO-1.63 \ 7 $
450.8 <i>4</i>	91	8508.5	22-	8057.7	21-	M1	0.0388	$\begin{aligned} \alpha(\mathbf{K}) = 0.0328 \ 5; \ \alpha(\mathbf{L}) = 0.00466 \ 7; \ \alpha(\mathbf{M}) = 0.001021 \ 15 \\ \alpha(\mathbf{N}) = 0.000236 \ 4; \ \alpha(\mathbf{O}) = 3.47 \times 10^{-5} \ 5; \\ \alpha(\mathbf{P}) = 2.01 \times 10^{-6} \ 3 \\ \mathbf{D} \mathbf{C} \mathbf{O} = 0.60 \ 8 \end{aligned}$
459.5 2	5 1	7035.5	19-	6576.0	18-	M1	0.0369	$\alpha(K) = 0.0312 \ 5; \ \alpha(L) = 0.00444 \ 7; \ \alpha(M) = 0.000971 \ 14$ $\alpha(N) = 0.000225 \ 4; \ \alpha(O) = 3.30 \times 10^{-5} \ 5; \ \alpha(P) = 1.91 \times 10^{-6} \ 3$
470.4 2	17 3	6562.7	17+	6092.1	16+	M1	0.0347	$\alpha(K) = 0.0294 \ 5; \ \alpha(L) = 0.00417 \ 6; \ \alpha(M) = 0.000913 \ 13$ $\alpha(N) = 0.000211 \ 3; \ \alpha(O) = 3.10 \times 10^{-5} \ 5; $ $\alpha(P) = 1.80 \times 10^{-6} \ 3$
483.5 4	71	5331.2	15-	4847.6	13-	E2	0.01655	$\begin{aligned} \alpha(\mathbf{K}) = 0.01328 \ I9; \ \alpha(\mathbf{L}) = 0.00255 \ 4; \ \alpha(\mathbf{M}) = 0.000574 \ 9 \\ \alpha(\mathbf{N}) = 0.0001312 \ I9; \ \alpha(\mathbf{O}) = 1.80 \times 10^{-5} \ 3; \\ \alpha(\mathbf{P}) = 7.41 \times 10^{-7} \ II \end{aligned}$
498.1 <i>3</i>	6 1	2281.10	5-	1783.0	3-	E2	0.01530	$\begin{aligned} \alpha(\mathbf{K}) = 0.01232 \ 18; \ \alpha(\mathbf{L}) = 0.00233 \ 4; \ \alpha(\mathbf{M}) = 0.000524 \ 8 \\ \alpha(\mathbf{N}) = 0.0001198 \ 17; \ \alpha(\mathbf{O}) = 1.652 \times 10^{-5} \ 24; \\ \alpha(\mathbf{P}) = 6.89 \times 10^{-7} \ 10 \end{aligned}$
514.1 2	12 2	5931.4	16-	5417.4	15-	M1	0.0277	DCO=2.0 4. $\alpha(K)=0.0234 4; \alpha(L)=0.00332 5; \alpha(M)=0.000725 11$ $\alpha(N)=0.0001679 24; \alpha(O)=2.47\times10^{-5} 4; \alpha(P)=1.431\times10^{-6} 20$
517.1 2	16 <i>3</i>	6258.2	17-	5741.1	16-	M1	0.0273	DCO=0.77 8. $\alpha(K)=0.0231 4; \alpha(L)=0.00327 5; \alpha(M)=0.000715 10$ $\alpha(N)=0.0001654 24; \alpha(O)=2.43\times10^{-5} 4;$ $\alpha(P)=1.410\times10^{-6} 20$
531.6 4	72	3338.1	(8 ⁻)	2806.9	7-			DCO=0.44 5. DCO=1.2 2.
534.5 5	5 1	6466.0	18-	5931.4	16-	E2	0.01276	$\alpha(K)=0.01034 \ 15; \ \alpha(L)=0.00189 \ 3; \ \alpha(M)=0.000424 \ 6$ $\alpha(N)=9.71\times10^{-5} \ 14; \ \alpha(O)=1.346\times10^{-5} \ 20; \ \alpha(P)=5.82\times10^{-7} \ 9$ DCO=1.3 3.
538.9 [#] 1	86 [#] 15	5011.1	14-	4472.2	12-	E2	0.01250	α (K)=0.01013 <i>15</i> ; α (L)=0.00184 <i>3</i> ; α (M)=0.000414 <i>6</i> α (N)=9.48×10 ⁻⁵ <i>14</i> ; α (O)=1.315×10 ⁻⁵ <i>19</i> ; α (P)=5.71×10 ⁻⁷ <i>8</i> I _y : for the doublet of 538.9+539.5, I γ =90 <i>14</i> . DCO=1.56 <i>6</i> .

γ (¹⁴⁶Dy) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α ^a	Comments
539.5 [#] 6 550.1 5	4 [#] 1 6 1	5808.0 7266.7	15,16 18 ⁻	5268.5 6717.3	14 ⁻ 17 ⁻	M1	0.0233	I _γ : for the doublet of 538.9+539.5, Iγ=90 14. α (K)=0.0197 3; α (L)=0.00279 4; α (M)=0.000609 9 α (N)=0.0001410 20; α (O)=2.07×10 ⁻⁵ 3; α (P)=1.204×10 ⁻⁶ 17
573.5 <i>4</i> 592.5 <i>4</i>	8 1 5 1	3091.2 5064.7	(7,9 ⁻) 13 ⁻	2517.7 4472.2	7 ⁻ 12 ⁻	& M1	0.0193	DCO=0.8 <i>1</i> . DCO=1.4 <i>2</i> . $\alpha(K)=0.01636\ 23;\ \alpha(L)=0.00230\ 4;$ $\alpha(M)=0.000504\ 8$ $\alpha(N)=0.0001166\ 17;\ \alpha(O)=1.713\times10^{-5}\ 25;$ $\alpha(P)=9.97\times10^{-7}\ 14$ DCO=0.6 <i>l</i> .
600.2 4	82	3691.4	(9.11^{-})	3091.2	(7.9^{-})	&		DCO=0.6 7. DCO=1.4 2.
632.4 [#] 2	4.2 [#] 13	4262.5	11-	3630.0	11+	&		I_{γ} : for the doublet of 632.4+633.4, I_{γ} =7 2. DCO=1.3 2.
633.4 [#] 3 642.0 2	3.0 [#] 11 13 3	6183.7 3159.6	(16) 8 ⁻	5550.3 2517.7	15 ⁻ 7 ⁻	M1	0.01578	I _γ : for the doublet of 632.4+633.4, Iγ=7 2. α (K)=0.01338 <i>19</i> ; α (L)=0.00188 <i>3</i> ; α (M)=0.000411 <i>6</i> α (N)=9.50×10 ⁻⁵ <i>14</i> ; α (O)=1.397×10 ⁻⁵ <i>20</i> ; α (P)=8.14×10 ⁻⁷ <i>12</i> DCO=0.82.9
665.0 4	6 1	3299.7	(7,8+)	2634.7	6+	0		De0-0.02 7.
673.5 1	57 9	2281.10	5-	1607.61	4+	(E1) [@]	0.00271	$\alpha(K)=0.00231 \ 4; \ \alpha(L)=0.000312 \ 5; \\ \alpha(M)=6.79\times10^{-5} \ 10 \\ \alpha(N)=1.565\times10^{-5} \ 22; \ \alpha(O)=2.27\times10^{-6} \ 4; \\ \alpha(P)=1.276\times10^{-7} \ 18 \\ PCO=0.99 \ 4.$
682.5 2	85 13	682.50	2+	0	0+	E2	0.00704	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00581 \ 9; \ \alpha(\mathrm{L}) = 0.000961 \ 14; \\ \alpha(\mathrm{M}) = 0.000214 \ 3 \\ \alpha(\mathrm{N}) = 4.91 \times 10^{-5} \ 7; \ \alpha(\mathrm{O}) = 6.93 \times 10^{-6} \ 10; \\ \alpha(\mathrm{P}) = 3.32 \times 10^{-7} \ 5 \end{array}$
695.9 <i>1</i>	65 10	3630.0	11+	2934.1	10+	M1	0.01291	DCO=1.45 5. $\alpha(K)=0.01095 \ I6; \ \alpha(L)=0.001533 \ 22;$ $\alpha(M)=0.000335 \ 5$ $\alpha(N)=7.75\times10^{-5} \ I1; \ \alpha(O)=1.140\times10^{-5} \ I6;$ $\alpha(P)=6.65\times10^{-7} \ I0$
700.9 [#] 2	8.3 [#] 15	7423.7	19-	6722.7	18-	M1	0.01268	DCO=0.42 2. $\alpha(K)=0.01076 \ 15; \ \alpha(L)=0.001506 \ 22;$ $\alpha(M)=0.000329 \ 5$ $\alpha(N)=7.61\times10^{-5} \ 11; \ \alpha(O)=1.119\times10^{-5} \ 16;$ $\alpha(P)=6.53\times10^{-7} \ 10$ I _y : for the doublet of 701.3+700.9, I _Y =13 2. DCO=1.1 I
701.3 [#] 3 703.6 3	4.7 [#] 10 1 1	3336.0 7266.7	(7,8 ⁺) 18 ⁻	2634.7 6562.7	6+ 17+			I_{γ} : for the doublet of 701.3+700.9, $I_{\gamma}=13$ 2. According to table 1 (2001Ro15) transition from $J^{\pi}=18^+$, however in fig. 2 from $J^{\pi}=18^-$. Apparently, it is a typo in the table
712.3 3	6 1	5980.9	15+	5268.5	14-	(E1)	0.00242	^{1.} $\alpha(K)=0.00206 \ 3; \ \alpha(L)=0.000278 \ 4;$ $\alpha(M)=6.04\times10^{-5} \ 9$ $\alpha(N)=1.392\times10^{-5} \ 20; \ \alpha(O)=2.02\times10^{-6} \ 3;$ $\alpha(P)=1.141\times10^{-7} \ 16$ DCO=0.7 1.

γ ⁽¹⁴⁶Dy) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{a}	Comments
727.4 4	5 1	7444.7	(19)-	6717.3	17-			Mult.: assumed by evaluators. Mult=M1 from fig. 4 of 2001Ro15 is inconsistent with the level scheme (fig. 2), where transition connects levels of the opposite parities.
730.5 <i>4</i> 738.6 2	5 <i>1</i> 6 <i>1</i>	5741.1 3898.2	16 ⁻ 10 ⁻	5011.1 3159.6	14 ⁻ 8 ⁻	E2	0.00587	$\alpha(K)=0.00486\ 7;\ \alpha(L)=0.000784\ 11;\ \alpha(M)=0.0001740\ 25$
755.7 3	13 3	4194.0	11-	3438.3	9-	E2	0.00557	$\alpha(N)=4.00\times10^{-7} 0, \alpha(O)=3.07\times10^{-7} 8, \alpha(P)=2.79\times10^{-7} 4$ DCO=1.6 2. $\alpha(K)=0.00462 7; \alpha(L)=0.000740 11;$
								α (M)=0.0001641 23 α (N)=3.77×10 ⁻⁵ 6; α (O)=5.36×10 ⁻⁶ 8; α (P)=2.65×10 ⁻⁷ 4 DCO=1 5 J
760.3 3	17 3	6092.1	16+	5331.2	15-	(E1) [@]	0.00212	$\alpha(K) = 0.00181 \ 3; \ \alpha(L) = 0.000243 \ 4; \alpha(M) = 5.28 \times 10^{-5} \ 8 \alpha(N) = 1.217 \times 10^{-5} \ 17; \ \alpha(O) = 1.771 \times 10^{-6} 25; \ \alpha(P) = 1.002 \times 10^{-7} \ 14 $
783.1 4	8 1	6114.2	16-	5331.2	15-	M1	0.00964	$\begin{array}{l} \alpha(\text{K}) = 0.00818 \ 12; \ \alpha(\text{L}) = 0.001141 \ 16; \\ \alpha(\text{M}) = 0.000249 \ 4 \\ \alpha(\text{N}) = 5.77 \times 10^{-5} \ 9; \ \alpha(\text{O}) = 8.48 \times 10^{-6} \ 12; \\ \alpha(\text{P}) = 4.96 \times 10^{-7} \ 7 \end{array}$
821.5 [#] 3	23.2 [#] 11	4847.6	13-	4026.1	12+	(E1) [@]	0.00182	DCO=0.72 7. $\alpha(K)=0.001552 22; \alpha(L)=0.000208 3;$ $\alpha(M)=4.51\times10^{-5} 7$ $\alpha(N)=1.040\times10^{-5} 15; \alpha(O)=1.516\times10^{-6}$ 22; $\alpha(P)=8.62\times10^{-8} 12$ I _γ : for the doublet of 821.5+822.4, I _γ =27 1.
822.4 [#] 3	3.8 [#] 7	4848.5	13+	4026.1	12+			I_{γ} : for the doublet of 821.5+822.4, $I\gamma$ =27 <i>1</i> . DCO=0.91 <i>6</i> .
842.2 2	28 4	4472.2	12-	3630.0	11+	(E1) [@]	1.73×10 ⁻³	α (K)=0.001479 21; α (L)=0.000198 3; α (M)=4.29×10 ⁻⁵ 6 α (N)=9.90×10 ⁻⁶ 14; α (O)=1.443×10 ⁻⁶ 21; α (P)=8.22×10 ⁻⁸ 12 DCO=0.96 7.
850.5 <i>3</i>	4 1	2458.1	(5)	1607.61	4+	P_		
925.1 1	79 12	1607.61	4+	682.50	2+	E2 ^{&}	0.00358	$\alpha(K)=0.00300 \ 5; \ \alpha(L)=0.000454 \ 7; \\ \alpha(M)=0.0001002 \ 14 \\ \alpha(N)=2.31\times10^{-5} \ 4; \ \alpha(O)=3.31\times10^{-6} \ 5; \\ \alpha(P)=1.730\times10^{-7} \ 25 \\ DCO=1 \ 35 \ 5 \\ \end{array}$
938.7 2	14 2	6092.1	16+	5153.3	14+	E2	0.00347	$\alpha(K) = 0.00291 \ 4; \ \alpha(L) = 0.000439 \ 7; \alpha(M) = 9.68 \times 10^{-5} \ 14 \alpha(N) = 2.23 \times 10^{-5} \ 4; \ \alpha(O) = 3.20 \times 10^{-6} \ 5; \alpha(P) = 1.679 \times 10^{-7} \ 24 $
1008.4 5	4 1	7266.7	18-	6258.2	17-	M1	0.00520	$\alpha(K)=0.00442\ 7;\ \alpha(L)=0.000612\ 9;$

γ ⁽¹⁴⁶Dy) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^a	Comments
1027.0 3	17 3	2634.7	6+	1607.61	4+	E2	0.00288	$ \begin{array}{c} \alpha(M) = 0.0001334 \ 19 \\ \alpha(N) = 3.09 \times 10^{-5} \ 5; \ \alpha(O) = 4.54 \times 10^{-6} \ 7; \\ \alpha(P) = 2.67 \times 10^{-7} \ 4 \\ DCO = 0.8 \ 2. \\ \alpha(K) = 0.00242 \ 4; \ \alpha(L) = 0.000358 \ 5; \\ \alpha(M) = 7.87 \times 10^{-5} \ 11 \\ \alpha(N) = 1.81 \times 10^{-5} \ 3; \ \alpha(O) = 2.62 \times 10^{-6} \ 4; \end{array} $
1083.8.5	2.1	7266 7	18-	6183 7	(16)			α (P)=1.398×10 ⁻⁷ 20 DCO=1.5 1.
1092.1 <i>I</i>	100 15	4026.1	12+	2934.1	10+	E2	0.00254	$\alpha(K)=0.00214 \ 3; \ \alpha(L)=0.000313 \ 5; \\ \alpha(M)=6.86\times10^{-5} \ 10 \\ \alpha(N)=1.582\times10^{-5} \ 23; \ \alpha(O)=2.29\times10^{-6} \ 4; \\ \alpha(P)=1.236\times10^{-7} \ 18 \\ DCO=1.44 \ 4.$
1100.5 3	72	1783.0	3-	682.50	2+	(E1) [@]	1.05×10^{-3}	$\alpha(K)=0.000895 \ I3; \ \alpha(L)=0.0001183 \ I7; \alpha(M)=2.57\times10^{-5} \ 4 \alpha(N)=5.92\times10^{-6} \ 9; \ \alpha(O)=8.66\times10^{-7} \ I3; \alpha(P)=5.00\times10^{-8} \ 7; \ \alpha(IPF)=1.72\times10^{-6} \ 3$
1127.3 3	31 5	5153.3	14+	4026.1	12+	E2	0.00238	DCO=0.9 <i>I</i> . $\alpha(K)=0.00201 \ 3; \ \alpha(L)=0.000292 \ 4;$ $\alpha(M)=6.40\times10^{-5} \ 9$ $\alpha(N)=1.476\times10^{-5} \ 2I; \ \alpha(O)=2.13\times10^{-6} \ 3;$ $\alpha(P)=1.161\times10^{-7} \ I7; \ \alpha(IPF)=7.62\times10^{-7} \ I4$
1132.5 4	3 1	5980.9	15+	4848.5	13+	E2	0.00236	DCO=1.33 8. $\alpha(K)=0.00199 3; \alpha(L)=0.000289 4;$ $\alpha(M)=6.34\times10^{-5} 9$ $\alpha(N)=1.461\times10^{-5} 21; \alpha(O)=2.11\times10^{-6} 3;$ $\alpha(P)=1.150\times10^{-7} 17; \alpha(IPF)=9.09\times10^{-7} 18$
1167.4 <i>4</i>	6 1	6717.3	17-	5550.3	15-	E2	0.00222	DCO=1.2 3. $\alpha(K)=0.00187 3; \alpha(L)=0.000271 4;$ $\alpha(M)=5.93\times10^{-5} 9$ $\alpha(N)=1.368\times10^{-5} 20; \alpha(O)=1.98\times10^{-6} 3;$ $\alpha(P)=1.083\times10^{-7} 16; \alpha(IPF)=2.55\times10^{-6} 5$
1196.9 <i>4</i>	5 1	6045.6	15+	4848.5	13+	E2	0.00212	DCO=1.4 2. α (K)=0.00178 3; α (L)=0.000257 4; α (M)=5.62×10 ⁻⁵ 8 α (N)=1.296×10 ⁻⁵ 19; α (O)=1.88×10 ⁻⁶ 3; α (P)=1.031×10 ⁻⁷ 15; α (IPF)=5.01×10 ⁻⁶ 8
1199.6 5 1218.5 5	33 112	2807.2 4848.5	13+	1607.61 3630.0	4 ⁺ 11 ⁺	E2	0.00205	DCO=1.5 2. $\alpha(K)=0.001724 \ 25; \ \alpha(L)=0.000247 \ 4;$ $\alpha(M)=5.41\times10^{-5} \ 8$ $\alpha(N)=1.248\times10^{-5} \ 18; \ \alpha(O)=1.81\times10^{-6} \ 3;$ $\alpha(P)=9.96\times10^{-8} \ 14; \ \alpha(IPF)=7.40\times10^{-6} \ 12$
1233.5 6 1251.2 5	3 <i>1</i> 3 <i>1</i>	5259.0 3768.9	13 ⁺ 9 ⁻	4026.1 2517.7	12 ⁺ 7 ⁻	E2	0.00195	DCO=1.8 2. $\alpha(K)=0.001637\ 23;\ \alpha(L)=0.000234\ 4;$ $\alpha(M)=5.11\times10^{-5}\ 8$ $\alpha(N)=1.179\times10^{-5}\ 17;\ \alpha(O)=1.712\times10^{-6}\ 24;$ $\alpha(P)=9.46\times10^{-8}\ 14;\ \alpha(IPF)=1.173\times10^{-5}\ 18$
1328.5 2	26 4	4262.5	11-	2934.1	10+	(E1) [@]	8.33×10 ⁻⁴	DCO=1.2 2. $\alpha(K)=0.000641 \ 9; \ \alpha(L)=8.41\times10^{-5} \ 12;$

γ ⁽¹⁴⁶Dy) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{a}	Comments
	_							α (M)=1.82×10 ⁻⁵ 3 α (N)=4.20×10 ⁻⁶ 6; α (O)=6.16×10 ⁻⁷ 9; α (P)=3.59×10 ⁻⁸ 5; α (IPF)=8.55×10 ⁻⁵ 12 DCO=0 77 5
								Mult.: assumed by evaluators. Mult=M1 from fig. 4 of 2001Ro15 is inconsistent with the level scheme (fig. 2), where transition connects levels of the opposite parity.
1350.3 <i>3</i>	71	5376.5	14+	4026.1	12+	E2	1.70×10^{-3}	α (K)=0.001413 20; α (L)=0.000199 3; α (M)=4.36×10 ⁻⁵ 7 α (N)=1.005×10 ⁻⁵ 14; α (O)=1.462×10 ⁻⁶ 21; α (P)=8.16×10 ⁻⁸ 12; α (IPF)=2.99×10 ⁻⁵ 5 DCO=1.2.2
1537.7 4	5 1	7278.5	18-	5741.1	16-	E2	1.39×10 ⁻³	$\begin{aligned} \alpha(K) = 0.001104 \ 16; \ \alpha(L) = 0.0001532 \ 22; \\ \alpha(M) = 3.34 \times 10^{-5} \ 5 \\ \alpha(N) = 7.72 \times 10^{-6} \ 11; \ \alpha(O) = 1.126 \times 10^{-6} \ 16; \\ \alpha(P) = 6.38 \times 10^{-8} \ 9; \ \alpha(IPF) = 8.60 \times 10^{-5} \ 13 \\ DCO = 1.12 \end{aligned}$
1628.5 <i>6</i> 1831.6 <i>9</i>	1 <i>1</i> 1 <i>1</i>	5259.0 5857.8	13+ 14+	3630.0 4026.1	11 ⁺ 12 ⁺			DCO=1 1. DCO=1 1. DCO=1 1.

[†] From 2001Ro15, except as noted.

[‡] From 2001Ro15, obtained by the evaluators from fig. 4. The authors suppose crossover transitions as E2. Other transitions have dipole type according to DCO ratios, but the authors have tagged them all as M1, although there are E1 transitions. These E1 transitions are assigned by the evaluators according to the proposed level schemes.

[#] Unresolved structure in 2001Ro15, γ intensity and DCO ratios are combined for two (or three) components. Based on width of arrows as shown in the level scheme figures, the evaluators have obtained separate γ intensities for the components; $\Delta I\gamma$ =0.7 has added quadratically to the uncertainties to allow for systematic errors.

[@] Imposed by evaluators as (E1) transition between positive-negative parities level structures according to statement in 2001Ro15.

& $\Delta J=0$ or 2 from DCO ratio >1 (not crossover transition).

^a Additional information 1.

 $^{146}_{\ 66}Dy_{80}$

(HI,xnγ) 2001Ro15

 $^{146}_{\ 66}\text{Dy}_{80}$

¹⁴⁶₆₆Dy₈₀