	History									
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016							
$Q(\beta^{-})=1050 \ 30; \ S(n)=6640 \ 40; \ S$	(p)=10089 20; Q(α)=-240 17 2012Wa38	3								

Produced and identified by 1953Ca10; uranium fission.

¹⁴⁶Ce Levels

The level scheme of ¹⁴⁶Ce is constructed on the basis of data on 6.1 s and 9.8 s β^- decays of ¹⁴⁶La, and fragment decay in ²⁵²Cf SF. ¹⁴⁶Ce produced also in ¹⁴⁷La(β^- n) decay; $\%\beta^-$ n=0.035 6 (1986Wa17), $\%\beta^-$ n=0.033 25 (1984Ma39), no γ rays of ¹⁴⁶Ce were observed.

Cross Reference (XREF) Flags

Α	¹⁴⁶ La β^-	decay	(6.1	s)
В	146 La β^-	decay	(9.8	s)

- ²⁵²Cf SF decay
- С 235 U(n,F γ) D

E(level) ^{†‡}	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0 [@]	0+	13.49 min 16	ABCD	$\%\beta^{-}=100$ T _{1/2} : average with Rajeval technique of 13.16 min 5 (1983Ge11), 13.52 min <i>13</i> (1980Ya07), 13.9 min 6 (1953Ca10), 14.6 min 8 (1950Sc85).
258.45 [@] 4	2+	0.231 ns 26	ABCD	 μ=+0.92 20 (2009Go09) J^π: 258.4γ E2 to 0⁺, band assignment. μ: obtained by IPAC method; sign from systematics, theory. Others: μ=0.92 68 (IMPAC 1999Sm05), μ=0.48 10 (IPAC 1986Gi05). T_{1/2}: average with Rajeval technique of 0.26 ns 5 (1974JaYY), 0.24 ns 3 (1980ChZM), 0.189 ns 10 (1989Ma38). Other: 0.29 ns (1970Wi16).
668.38 [@] 4	4+		ABC	J^{π} : 409.8 γ E2 to 2 ⁺ , band assignment.
924.58 ^b 4	1-		ABC	J^{π} : 666.1 γ E1 to 2 ⁺ , 924.59 γ to 0 ⁺ , from $\gamma\gamma(\theta)$, head level of octupole band. This level is not connected by a transition with next member of the band, namely 960.72 keV level. Assignment is based on E(level) considerations (1988Ph02,1999HaZV).
960.72 ^b 5	3-		ABC	J ^{π} : 702.2 γ E1 to 2 ⁺ , from $\gamma\gamma(\theta)$, octupole band assignment.
1043.24 ^{&} 8	0^{+}		AB	J ^{π} : 784.7 γ E2 to 2 ⁺ , from $\gamma\gamma(\theta)$, head level of β -band.
1171.35 [@] 7	6+		ABC	J^{π} : 503.0 γ E2 to 4 ⁺ , band assignment.
1182.98 <mark>b</mark> 6	5-		ABC	J ^{π} : 514.7 γ E1 to 4 ⁺ , from $\gamma\gamma(\theta)$, octupole band assignment.
1274.34 ^{&} 5	2^{+}		AB	J ^{π} : 1015.9 γ M1+E2 to 2 ⁺ , 1274.3 γ to 0 ⁺ , from $\gamma\gamma(\theta)$, β -band assignment.
1381.93 ^a 5	2+		AB	J^{π} : 713.41 γ to 4 ⁺ , 1382.02 γ to 0 ⁺ , head level of γ band (2000Ya08).
1551.06 ^b 10	7-		С	J^{π} : 379.7 γ (E1) to 6 ⁺ , 368.0 γ to 5 ⁻ ; decay pattern and band assignment. E(level): this could be the same as the level 1551.13 keV. There is a discrepancy in their J^{π} assignments and their decay patterns.
1551.13 9	5^{-}		В	J ^{π} : 379.8 γ E1 to 6 ⁺ , 882.6 γ to 4 ⁺ is confirmed by $\gamma\gamma$ coin in 1993Sh10.
1576.63 ^a 6	3+		AB	J ^{π} : 1318.14 γ M1+E2 to 2 ⁺ , from $\gamma\gamma(\theta)$, band assignment.
1627.30 ^{&} 7	4+		AB	J ^{π} : 959.1 γ M1+E2 to 4 ⁺ , from $\gamma\gamma(\theta)$, band assignment.
1657.77 12	0^{+}		AB	J^{π} : 1398.8 γ to 2 ⁺ , from $\gamma\gamma(\theta)$, $0+\rightarrow 2+\rightarrow 0^+$ cascade in 1981WaZL; log $f^{1u}t=8$ in β - decay of 146 La, $J^{\pi}=(2^-)$.
1711.92 ^a 8	(4+)		В	J^{π} : 1453.5 γ to 2 ⁺ , 528.8 γ to 5 ⁻ , 427.7 γ from (5 ⁺); band assignment (2000Ya08).
1736.77 [@] 12	8+ #		BC	

¹⁴⁶Ce Levels (continued)

E(level) ^{†‡}	\mathbf{J}^{π}	XREF	Comments
1753.83 7	$(1^{-}, 2, 3^{-})$	AB	I^{π} : 793.1v to 3 ⁻ , 829.3v to 1 ⁻
1756.68 6	$(1,2^+)$	AB	J^{π} : 713.5 γ and 1756.8 γ to 0 ⁺ .
1769.22 10	$(4^+, 5^-)$	В	J^{π} : 808.6y to 3 ⁻ , 501.3y from (6 ⁺); from feeding in ¹⁴⁶ La, $J^{\pi} = 6^{-} \beta^{-}$ decay.
1797.0.3	(, , , , ,	В	
1802.31 4	(4^{+})	AB	J^{π} : 1543.9 γ to 2 ⁺ , 631.4 γ to 6 ⁺ .
1808.45 13		AB	
1810.41 ^a 6	5+	В	J^{π} : 183.2 γ M1+E2 to 4 ⁺ , 638.9 γ , M1+E2 to 6 ⁺ ; band assignment (2000Ya08).
1831.91 <i>11</i>	$(1,2^+)$	AB	J^{π} : 1831.6 γ to 0 ⁺ .
1875.55 17	$(4,5^{-})$	В	J^{π} : 915.0 γ to 3 ⁻ , 692.4 γ to 5 ⁻ .
1891.83 9	$(3^{-}, 4, 5^{-})$	В	J^{π} : 523.0 γ from (3 ⁻); feeding in ¹⁴⁶ La, $J^{\pi} = 6^{-} \beta^{-}$ decay.
1916.19 <i>11</i>	$(4,5^{-})$	В	J^{π} : 955.5 γ to 3 ⁻ ; from feeding in ¹⁴⁶ La, $J^{\pi}=6^{-}\beta^{-}$ decay.
1956.26 8	$(4^+, 5, 6^+)$	AB	J^{π} : 784.8 γ to 6 ⁺ , 1288.2 γ to 4 ⁺ ; from feeding in ¹⁴⁶ La, $J^{\pi}=6^{-}\beta^{-}$ decay.
1989.16 14	()-)-)	AB	
2019 41 ^b 14	$(9^{-})^{\#}$	C	
2022.6.3	(4^+)	R	I^{π} : 1764.2 γ to 2 ⁺ : from feeding in ¹⁴⁶ I a $I^{\pi}=6^{-}\beta^{-}$ decay
2022.0 5	(4^+)	AR	I^{π} : 1772 7 $_{\gamma}$ to 2 ⁺ 860 7 $_{\gamma}$ to 6 ⁺
2051.55 10	(•)	AB	<i>b</i> · <i>1</i> / <i>2</i> ./ <i>f</i> to <i>b</i> , 000./ <i>f</i> to <i>b</i> .
2071.79 12	(2^{+})	AB	J^{π} : 1028.5 γ to 0 ⁺ , 1404.2 γ to 4 ⁺ .
2090.47 13	(4^+)	В	J^{π} : 1832.7 γ to 2 ⁺ , 918.6 γ to 6 ⁺ .
2126.46 11	$(1^+, 2^+)$	AB	J^{π} : 1084.3 γ to 0 ⁺ , 549.8 γ to 3 ⁺ .
2128.68 21		В	
2139.81 14	$(4^+, 5^+)$	В	J^{π} : 969.0 γ to 6 ⁺ , 563.4 γ to 3 ⁺ .
2155.99 12	$(1^{-},2^{+})$	AB	J^{π} : 2155.8 γ to 0 ⁺ , 1195.4 γ to 3 ⁻ .
2177.37 7	$(5^{-},4^{+})$	В	J^{π} : 1216.5 γ to 3 ⁻ , 1006.1 γ to 6 ⁺ .
2179.44 18	$(1,2^{+})$	Α	J^{π} : 2179.6 γ to 0 ⁺ .
2183.0 5		В	
2194.08 17		В	
2209.6 4	(2.4+)	В	
2222.71 13	$(3,4^+)$	AB	J'' : 948.4 γ to 2', 646.0 γ to 3', 1262.2 γ to 3'.
2233.66 16	$(1,2^+)$	A	$J^{*}: 2233.9\gamma$ to 0 ⁺ .
2256.53 8	(4',5,6')	В	$J^{\prime\prime}$: 225.0 γ to (4 ⁺); from feeding in ¹⁴⁵ La, $J^{\prime\prime}$ =6 β decay.
2261.1 3		A	
2202.14 11	(c.t.)	В	
2270.30°C 14	(6^{+})	В	J^{n} : 1602.1 γ to 4 ⁺ ; band assignment (1993Sh10).
2274.5 3	$(1 - 2^{+})$	В	
2311.02 11	$(1, 2^{+})$	AB	$J^{*}: 2311.0\gamma$ to $0^{+}, 1350.5\gamma$ to 3^{-} .
2318.57 /	$(1,2^{+})$	AB	$J^{*}: 2318.6\gamma$ to 0^{+} .
2357.50	(10+) #	D	
2351.51 16	$(10^{+})^{\prime\prime}$	C	
2308.08 10	$(1, 2^{+})$	AB	$J^{*}: 2307.9\gamma \ 10 \ 0^{\circ}, 1407.0\gamma \ 10 \ 3^{\circ}.$
2373.3 3	(2^{+})		I^{π} : 2307 78 α to 0 ⁺ 366 68 α to (4 ⁺)
2397.85 9	(2)		J . 2397.787 10 0 , 300.087 10 (4).
2399.07 19	(4^{+})		I^{π} , 2155 On to 2 ⁺ , from fooding in ¹⁴⁶ I on I^{π} -6 ⁻ ρ^{-} decay
2414.31 10	(4)		J = 2155.97 to 2, from recurring in Ea, $J = 0$ p decay.
2442.40 22	(3^{-})	AR AR	I^{π} : 2188 30 to 2 ⁺ 572 12 to (4.5 ⁻) 836 02 from (1 ⁻ 2 ⁺)
2440.89 10	(\mathbf{J})	R	$\mathbf{J} = \mathbf{J} = $
2512.21.21		AR	
2519.16 15		В	
2543.83 13		AB	
2551.86 10		AB	
2562.65 ^b 16	$(11^{-})^{\#}$	С	
2569.86 13	()	AB	
2587.68 21		В	
2639.47 19		Α	

Continued on next page (footnotes at end of table)

¹⁴⁶Ce Levels (continued)

E(level) ^{†‡}	J^{π}	XREF	Comments
2713.44 15		AB	
2779.5 4	(1.2^{+})	B	J^{π} : 2779.4 γ to 0 ⁺ .
2796 72 25	(1,2)	B	
2809 5 3		R	
2807.5 5		AR	
2861 88 11	$(1 2^{+})$	AR	I^{π} : 2861.5% to 0 ⁺
2868 96 12	(1,2)	AR	3.2001.37.000.
2000.90 12		D	
2914.23 12	$(2 \ 3^{-})$		I^{π} , 2028 South I^{-} 1277 Opute 3^{+} 1002 South 3^{-}
2933.40 11	(2,3) $(1,2^+)$		J = 2026.87 to 1, $1577.07 to 5$, $1992.57 to 5$.
2990.27 24	(1,2)	A D	J. 2990.07 10 0 .
5004.0 S		D	
3163.4° <i>3</i>	(13 ⁻) [#]	C	
3164.6 5	$(1,2^{+})$	В	J^{π} : 3165.5 γ to 0 ⁺ .
3166.65 17	$(1,2^{+})$	Α	J^{π} : 1508.7 γ to 0 ⁺ .
3243.11 9		В	
3255.45 17	$(2,3^{+})$	AB	J^{π} : 1129.2 γ to (1 ⁺ ,2 ⁺), 2293.2 γ to 3 ⁻ , 1678.7 γ to 3 ⁺ .
3273.7 9		В	
3283.15 10	$(1^{-},2^{+})$	AB	J^{π} : 1625.0 γ to 0 ⁺ , 2322.38 γ to 3 ⁻ .
3329.54 12	(2^{+})	AB	J^{π} : 1673.1 γ to 0 ⁺ , 1752.9 γ to 3 ⁺ , 2368.8 γ to 3 ⁻ .
3342.03 10		AB	
3390.2 6		В	
3399.56 11	$(1,2^{+})$	Α	J^{π} : 1741.5 γ to 0 ⁺ .
3403.3 4		В	
3450.6 4		В	
3457.86 10		Α	
3494.51 16		В	
3502.20 21		В	
3532.7 4		В	
3535.16 21		AB	
3653.7 5	(2^{+})	В	J^{π} : 3653.7 γ to 0 ⁺ , 2985.2 γ to 4 ⁺ .
3729.9 4		В	
$3826.0^{b}4$	$(15^{-})^{\#}$	C	
3859 1 5	(15)	R	
3918.0.6		R	
3956 66 19		▲	
3078 / 5	$(3^{-} 4^{+})$	R	I^{π} : 2427 Du to 5 ⁻ 3720 3u to 2 ⁺
1080 70 10	(3,+)	۵ ۵	J : 2421.07 to 5 , 5720.57 to 2 .
4100 4 6		р	
4210.0 5		B	
1255 3 1		B	
4255.5 4 1260 1 1		B	
7207.4 4		ط ۸	
4407 1 0		A D	
4497.19 450172		D D	
4321./ 3	$(1, 2^{+})$	D A	$I\pi$, 4600 2 to 0 ⁺
4090.04 21	$(1,2^{+})$	A	J^{-1} 4090.2 γ 10 U ⁻¹ .

[†] Band assignments are as in 2000Ya08 and 1999HaZV (octupole vibrational band), except as noted. [‡] From a least-squares fit to $E\gamma$, normalized $\chi^2=1.5$. [#] From band structure with well established spins and parity of low-lying levels connected by cascade of transitions.

[@] Band(A): ground state band, $\Delta J=2$.

[&] Band(B): possible β vibrational band, $\Delta J=2$.

^{*a*} Band(C): possible γ vibrational band, $\Delta J=1$.

^{*b*} Band(D): octupole vibrational band, $\Delta J=2$.

 γ (¹⁴⁶Ce)

Warning: there is serious discrepancy in γ placement between the ¹⁴⁶La (6.1 s) and the ¹⁴⁶La (9.8 s) decays. Often the branching ratios differ significantly from each other.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^f	Comments
258.45	2+	258.43 5	100	0.0 0+	E2		0.0786	B(E2)(W.u.)=43 5
668.38	4+	409.78 5	100	258.45 2+	E2		0.0189	
924.58	1-	666.09 ^{an} 6	80 nd 4	258.45 2+	E1+(M2)		0.00191 4	Very small value of A_4 in the cascade 666γ -258 γ indicates pure dipole transition (1983Wo03).
		924.59 6	$100^{d} 5$	$0.0 0^+$				
960.72	3-	36.2 <i>3</i>	1.7 10	924.58 1-				
		292.32 5	10.7 7	668.38 4+				
		702.18 8	100 5	258.45 2+	E1		0.00170 5	Very small value of A_4 in the cascade 666γ -258 γ indicates pure dipole transition (1983Wo03).
1043.24	0^{+}	118.5 2	1.7 <mark>d</mark> 4	924.58 1-				
		784.7 6	100 33	258.45 2+	E2		0.00346	
1171.35	6+	503.0 1	100	668.38 4+	E2		0.01061	
1182.98	5-	221.60 ^b 25		960.72 3-				
		514.67 6	100	668.38 4+	E1		0.00336	
1274.34	2^{+}	231.2 5	0.73 30	1043.24 0+				
		314.8 ^a 8	11 2	960.72 3-				
		349.9 ^a 6	2.9 12	924.58 1				
		607.1 4	1.3 5	668.38 4+				
		1015.90 7	100 12	258.45 2+	M1+E2	5.4 + 31 - 15	0.00198 4	
		1274.29 12	37.8	$0.0 0^+$				
1381.93	2^{+}	107.61 9	0.56 ^{<i>a</i>}	1274.34 2+				
		338.8 <i>3</i>	0.48 15	1043.24 0+				
		421.11 9	20 13	960.72 3-				
		457.40 7	55 15	924.58 1				
		/13.41 18	40 13	008.38 4				
1551.00	7-	1382.02.8	100 33	0.0 0				
1551.06	/	368.0° 1	140	1182.98 5				
	-	379.70° 25	100°	1171.35 6+	(E1)		0.00689	
1551.13	5	379.804 7	100 9	11/1.35 6	EI		0.00689	
	- 1	882.64 3	9.4 15	668.38 4				
1576.63	3+	194.8° 5	2.6° 13	1381.93 2+				
		302.4 × 3	<5 ^a	1274.34 2+				
		908.15 15	22.5 ^d 15	668.38 4+				
		1318.14 7	100 d 5	258.45 2+	M1+E2	6.5 +17-11	1.17×10^{-3}	
1627.30	4+	352.9 ^a 3	3.6 5	1274.34 2+				

4

Adopted Levels, Gammas (continued)										
	γ (¹⁴⁶ Ce) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I _γ ‡	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	αf	Comments		
1627.30	4+	444.2 ^a 2 666.09 ^{ach} 8	12.6 7 24 ^h 3	1182.98 5 ⁻ 960.72 3 ⁻				E_{γ} : poor fit, difference between energies of		
		050 100 14	100 10		141 50		0.000(0.0	corresponding levels equals 666.58 7.		
		959.10 ^a 14	$100 \ 10$	668.38 4	MI+E2	1.19 +16-14	0.00262 8			
		1368.8" 1	30" 5	258.45 2	E2		1.09×10 ⁻⁵			
1657.77	0^{+}	275.5 3	6^{a} 4	1381.93 2+						
		383.21 24	$13^{a} 5$	1274.34 2+						
		1398.87 28	100 d 50	$258.45 \ 2^+$						
1711.92	(4^{+})	528.8 ^{<i>a</i>} 3	26 4	1182.98 5-						
		751.1ª I	75.8	960.72 3-						
		1043.6° I 1452.5 [°] 2	100 10	668.38 4 ⁺						
1726 77	0+	$1433.5^{\circ}5$	40 4	238.43 2						
1/30.//	8	185.65 15	30°	1551.06 /						
1753.83	$(1^{-}23^{-})$	793 08 14	100 30	960 72 3						
1755.05	(1,2,5)	829.25 7	82 17	924.58 1 ⁻						
		1495 2 3	<7 ^d	258 45 2+						
1756 68	$(1, 2^+)$	$713 47^{h} 10$	$15h_{7}$	$1043 24 0^+$						
1750.00	(1,2)	831.97 17	20.5	924.58 1						
		1498.15 14	100 17	258.45 2+						
		1756.79 9	60 12	0.0 0+						
1769.22	$(4^+, 5^-)$	585.8 ^a 4	19 <i>3</i>	1182.98 5-						
		808.6 ^{<i>a</i>} 1	100 10	960.72 3-						
1797.0		1538.5 ^a 3	100	$258.45 \ 2^+$						
1802.31	(4^{+})	631.4 ^{<i>a</i>} 7	34 6	1171.35 6+						
		1133.92 ^{<i>a</i>} 19	48 9	668.38 4+						
		1543.86° 1/	100 10	258.45 2						
1808.45		533.7 2	304 5	1274.34 2+						
		1140.2 2	100 ^{<i>a</i>} 8	668.38 4+						
		1550.30 ^x 21	100 ^{<i>a</i>} 10	$258.45 \ 2^+$						
1810.41	5+	183.16 ^{<i>a</i>} 7	100 9	1627.30 4+	E2+M1	2.7 + 9 - 7	0.244 5			
		233.6° 4	6.0 7	1576.63 3*						
		$62/.1^{a}$ 2	14.5 15	1182.98 5	M1 + E2	0 22 15	0.0092.3			
		$1142 1^{a} 1$	34 J 89 7	668 38 4 ⁺	WII + EZ	0.33 13	0.0062 3			
1831.01	$(1, 2^+)$	1573.60.13	100^{d} 5	258.35 + 258.45 + 2						
10,11,71	(1,2)	$1971 40^{10}$	225d	2J0.+J Z						
1875 55	(4.5^{-})	1831.00^{-2} 18 602 A^{a} A	22.3°° 23 40.8	U.U U' 1182.08 5-						
10/3.33	(+,))	$9150^{a}2$	100 8	960 72 3 ⁻						
		J15.0 L	100.0	100.12 5						

S

 $^{146}_{58}\mathrm{Ce}_{88}\text{--}5$

From ENSDF

 $^{146}_{58}\mathrm{Ce}_{88}$ -5

$\gamma(^{146}Ce)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
1891.83	$(3^{-},4,5^{-})$	81.2 ^{<i>a</i>} 2	19.5 21	1810.41 5+	
		123.1 ^{<i>a</i>} 4	15 5	1769.22 (4+,5)	
		1223.5 ^{<i>a</i>} 1	100 8	668.38 4+	
1916.19	$(4,5^{-})$	732.4 ^{<i>a</i>} 5	7.6 18	1182.98 5	
1056.26	$(4^+ 5 6^+)$	955.5^{a} I 145.5 ^a 6	30.11	960.72 3 1810.41 5 ⁺	
1930.20	(4,,5,0)	$4047^{a}4$	27 1 21	$1510.41 \ 5$ $1551 \ 13 \ 5^{-}$	
		773.5 ^{<i>a</i>} 1	100 7	1182.98 5	
		784.8 ^{<i>a</i>} 1	42 9	1171.35 6+	
		1288.2 ^{<i>a</i>} 2	38 5	668.38 4+	
1989.16		1028.42 ⁸ 18	48.7 ^{dg} 17	960.72 3-	
		1064.6 ^{&g} 2	100 ^{dg} 7	924.58 1-	
2019.41	(9 ⁻)	282.7 ^b 1	100 ^e	1736.77 8+	
		468.25 ^b 15	69 ^e	1551.06 7-	
2022.6	(4 ⁺)	1353.9 ^a 5	87 <i>13</i>	668.38 4+	
2021 42	(4 ±)	1764.2 ^{<i>a</i>} 3	100 15	258.45 2+	
2031.43	(4')	221.5°° 2 756.80.24	97 23	1810.41 5' 1274.24 2 ⁺	
		750.8924 8607 ^{<i>a</i>} 2	95 26	1274.34 2 1171.35 6 ⁺	
		1362.87 30	100 23	668.38 4+	
		1772.67 14	95 21	258.45 2+	
2051.55		294.70 ^{&} 25	<10.3 ^d	1756.68 (1,2+)	
		1793.28 18	100 d 4	258.45 2+	
2071.79	(2^{+})	797.50 <mark>&</mark> 25	<27 d	1274.34 2+	
		1028.5 ^{&g} 2	100 ^{dg} 11	1043.24 0+	
		1404.2 6	16 5	668.38 4+	
		1813.26 22	19 5	258.45 2+	
2090.47	(4+)	908.0 ^{<i>an</i>} 2	14 ⁿ 3	1182.98 5-	
		918.6 ^{<i>a</i>} 3	38 6	$1171.35 6^+$	
		1421.7^{a} 2 1832 7 ^a 5	100 10	$008.38 4^{\circ}$ 258.45 2 ⁺	
2126.46	(1+2+)	540 8 × 3	$\frac{15}{27d}$	1576.63 3+	
2120.40	(1,2)	749.0 5	27 5	1370.03 3	
		950 17 16	100d 10	1301.93 2	
		1094 210 14	$\alpha d = \frac{100}{5}$	12/4.34 2	E , near fit difference between energies of corresponding levels equals 1002.21 /2
		1004.31 14	94 J	1043.24 U	E_{γ} , poor in, unrefered between energies of corresponding levels equals 1085.21 12.
		1201.03 1/	41^{-0}	924.38 I	
2128 68		1808.5 5 1460.3 <mark>4</mark> .2	85 [°] 11 100	258.45 2 668.38 4 ⁺	
2120.00	$(4^+, 5^+)$	329.4^{a} 2	100 9	$1810.41 5^+$	
2107.01	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2227.1 2	100 /	1010/11 0	

$\gamma(^{146}Ce)$ (continued)

E_i (level)	\mathbf{J}_i^π	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
2139.81	$(4^+, 5^+)$	427.7 ^a 2	51 5	1711.92 (4+)
		563.4 ^a 4	34 5	1576.63 3+
		969.0 ^a 4	30 6	1171.35 6+
2155.99	$(1^{-},2^{+})$	881.70 ^{&} 25	<20 ^d	1274.34 2+
		1195.36 22	33 d 6	960.72 3-
		1897.67 25	63 ^d 4	258.45 2+
		2155.80 ^{&g} 18	100 ^{dg} 6	$0.0 0^+$
2177.37	(5 ⁻ ,4 ⁺)	284.7 ^{<i>a</i>} 4	6.0 10	1891.83 (3-,4,5-)
		367.00 ^a 7	100 9	1810.41 5+
		465.5 ^a 3	15.8 20	1711.92 (4 ⁺)
		550.0 ^a 1	86 7	1627.30 4+
		993.8 ^a 4	10.4 20	1182.98 5-
		1006.1 ^{<i>a</i>} 2	35 <i>3</i>	1171.35 6+
		1216.5 ^{<i>a</i>} 3	18 <i>3</i>	960.72 3-
		1509.2 ^{<i>a</i>} 2	54 <i>4</i>	668.38 4+
2179.44	$(1,2^{+})$	1920.80 25	73 ^d 5	258.45 2+
		2179.60 ^{&} 25	100 <mark>0</mark> 8	$0.0 0^+$
2183.0		1924.5 ^{<i>a</i>} 5	100	258.45 2+
2194.08		383.4 ^{ah} 4	11 ^h 3	1810.41 5+
		1011.2 ^{<i>a</i>} 2	100 15	1182.98 5-
		1022.6 ^{<i>a</i>} 4	52 9	1171.35 6+
2209.6		1248.9 ^{<i>a</i>} 4	100	960.72 3-
2222.71	$(3,4^{+})$	646.0 <i>3</i>	61 9	1576.63 3+
		948.42 15	100 18	1274.34 2+
		1262.2 4	70 12	960.72 3-
2233.66	$(1,2^{+})$	1975.10 [°] 18	100 ^{<i>a</i>} 10	258.45 2+
		2233.9 ^x 3	<42 ^{<i>a</i>}	$0.0 0^+$
2256.53	$(4^+, 5, 6^+)$	225.0 ^{<i>a</i>} 4	6.0 8	2031.43 (4+)
		300.3 ^{<i>a</i>} 1	14.8 12	1956.26 $(4^+, 5, 6^+)$
		446.054 7	100 9	1810.41 5*
		/05.84 /	9.9.20	1551.13 5
		10/4.04 2	13.5 10	1182.98 5
2261.1		1336.50 [°] 25	100 a	924.58 1-
2262.14		307.0^{4}	11.4 11	1956.26 $(4^+, 5, 6^+)$
2070 20	((+)	10/9.14 1	100 8	1182.98 5
2270.30	(0')	501.34 6	55 16	1/69.22 (4',5)
		042.9° 2	100 8	102/.30 4'
		$108/.0^{\circ} 0$ 1008 00 5	1/0	1182.98 D
		1098.0 3	23 0	11/1.33 0'

-

$\gamma(^{146}Ce)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
2270.30	(6^{+})	1602.1 ^{<i>a</i>} 2	100 11	668.38 4+	
2274.5	(•)	358.5 ^{<i>a</i>} 8	23 7	1916.19 (4,5 ⁻)	
		1091.5 ^a 3	100 30	1182.98 5-	
2311.02	$(1^-, 2^+)$	1037.65 ^c 15	67 <mark>d</mark> 4	1274.34 2+	E_{γ} : poor fit, difference between energies of corresponding levels equals 1036.72 12.
		1350.5 <mark>&</mark> <i>3</i>	19 d 3	960.72 3-	
		1386.37 17	26 <i>3</i>	924.58 1-	
		2052.5 ^a 3	100 ^d 6	258.45 2+	
		2311.00 ^{&} <i>18</i>	19 ^d 3	$0.0 0^+$	
2318.57	$(1,2^+)$	2060.10 ^h 6	72 ^{dh} 16	258.45 2+	
		2318.60 <mark>&</mark> <i>18</i>	100 d 5	$0.0 0^+$	
2337.5		1166.9 ^a 7	95 24	1171.35 6+	
		1668.2 ^a 8	100 27	668.38 4+	
2351.51	(10^{+})	332.3 ^b 2	42 ^e	2019.41 (9-)	
		614.7 <mark>6</mark> 2	100 ^e	1736.77 8+	
2368.08	$(1^{-},2^{+})$	316.7 ^{&} 3	<23 ^d	2051.55	
		1324.8 ^{&} 3	27 d 9	1043.24 0+	
		1407.60 ^{&} 25	34 d 7	960.72 3-	
		1443.70 ^{&} 18	100 d 9	924.58 1-	
		2109.1 4	18 ^d 5	258.45 2+	
		2367.90 ^{&} 18	73 ^d 5	$0.0 0^+$	
2373.3		605.0 ^a 5	47 7	1769.22 (4+,5)	
		1190.0 ^a 3	100 14	1182.98 5-	
2397.85	(2^{+})	346.29 15	77 5	2051.55	
		366.68 [°] 17	67 ^{<i>a</i>} 5	2031.43 (4 ⁺)	
		1354.40 17	24.6 ^{<i>d</i>} 18	1043.24 0+	
		1473.3 ^{<i>a</i>} 4	78 44	924.58 1-	
		2397.78 15	100 ^{<i>a</i>} 7	$0.0 0^+$	
2399.07		2140.60 ^x 18	100 a	258.45 2+	
2414.51	(4+)	523.0 ⁴ 2	100 12	1891.83 (3 ⁻ ,4,5 ⁻)	
		$1140.20^{\circ} 25$	76 ⁴ 6	1274.34 2+	
		1231.94 3	70 11 22 d 5	1182.98 5	
		1489.50 ^{cc} 25	334 5	924.58 1	I_{γ} : doubtful transition from $I^{46}La \beta$ decay (6 s) (1982ShZV), it should be seen also in 9.8 s β decay of $I^{46}La$ but it is not measured (1993Sh10).
		2155.88 19	60 7	258.45 2+	· · ·
2442.40		2183.80 ^{&} 25	100	258.45 2+	
2446.89	(3 ⁻)	572.1 ^{<i>a</i>} 4	56 12	1875.55 (4,5 ⁻)	
		693.0 ^{&} 4	27 ^d 16	1753.83 (1 ⁻ ,2,3 ⁻)	

 ∞

From ENSDF

$\gamma(^{146}Ce)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
2446.89	(3^{-})	870.07 16	22.8	1576.63	3+	
		1172.6 7	50 16	1274.34	2+	
		1485.1 ^{&c} 3	17 d 3	960.72	3-	E_{γ} : poor fit, difference between energies of corresponding levels equals 1486.16 9.
		2188.33 15	100 12	258.45	2+	
2468.8		1297.4 ^{<i>a</i>} 3	100	1171.35	6+	
2512.21		1844.8 ^{<i>a</i>} 4	69 25	668.38	4+	E_{γ} : poor fit, difference between energies of corresponding levels equals 1842.93 13.
		2253.38 ^a 24	100 34	258.45	2+	
2519.16		708.8 ^{<i>a</i>} 2	100 10	1810.41	5+	
		1336.34 5	31.9	1182.98	5	
2512 82		1850.7 2	98 10	008.38	$(1, 2^{\pm})$	
2343.83		107.40 23 1582 7 ^{<i>a</i>} 6	35 13	1/30.08 960.72	(1,2) 3^{-}	
		1619 15 15	52 10	924 58	1-	
2551.86		595.78 16	100 30	1956.26	$(4^+, 5, 6^+)$	
		1368.8 ^h 1	38 ^h 10	1182.98	5-	
2562.65	(11 ⁻)	211.15 ^b 5	100 ^e	2351.51	(10^{+})	
		543.2 ^b 1	97 <mark>e</mark>	2019.41	(9 ⁻)	
2569.86		993.00 ^{&} 25	83 ^d 21	1576.63	3+	
		1188.70 ^{&} 25	<42 ^d	1381.93	2+	E_{γ} : poor fit, difference between energies of corresponding levels equals 1187.65 15.
		2311.06 17	100 ^{<i>a</i>} 8	258.45	2+	
2587.68		777.0 ^{<i>a</i>} 4	44 6	1810.41	5+	
		1416.2 ^{<i>a</i>} 4	45 11	1171.35	6 ⁺	
		1919.5" 3	100 16	668.38	4'	
2639.47		2381.00 ^{cc} 18	1004	258.45	2+	
2/13.44		1752.63 23	100 42	960.72	3	
2770 5	(1.2^{+})	2455.01 18 2521 0 ^{<i>a</i>} 1	42 17	258.45	2+ 2+	
2119.5	(1,2)	2779.4^{a} 5	100	0.0	0^{+}	
2796 72		1625 4 ^{ah} 4	$50^h 8$	1171 35	6+	
2190.12		2128.3^{a} 3	100 14	668.38	4 ⁺	
2809.5		2141.1^{a} 3	100	668.38	4+	
2841.11		1916.40 ^{&} 18	15.2 ^d 16	924.58	1-	
		2582.69 13	100 ^d 6	258.45	2+	
2861.88	$(1,2^+)$	1587.70 ^{&} 18	14.1 ^d 13	1274.34	2+	
		1937.20 ^{&} 18	14.1 ^d 13	924.58	1-	
		2603.46 26	100 ^d 6	258.45	2+	
		2861.50 21	7.7 ^d 13	0.0	0^{+}	
2868.96		1595.1 ^{&} 4	15 ^d 5	1274.34	2+	

9

 $^{146}_{58}\mathrm{Ce}_{88}$ -9

$\gamma(^{146}Ce)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I _γ ‡	E_f	${ m J}_f^\pi$	Comments
2868.96		1907.5 4	18 ^d 5	960.72	3-	
		1944.58 15	82 ^d 8	924.58	1-	
		2610.10 ^a 22	100 d 5	258.45	2+	
2914.23		652.2 ^{<i>a</i>} 3	30 4	2262.14		
		957.9 ^a 7	100 24	1956.26	$(4^+, 5, 6^+)$	
		1103.7 ^{<i>a</i>} 2	50 6	1810.41	5+	
		1363.2 ^{<i>a</i>} 2	15 6	1551.13	5-	
2052 46	(2.2-)	1/31.24 2	64 0	1182.98	3	
2953.46	$(2,3^{-})$	881.70 25	<6 ^d	2071.79	(2^{+})	
		1377.00 25	<6 ⁴	15/6.63	3-	
		1992.52 16	21.84 18	960.72	3-	
		2028.85 40	47^{a}_{3}	924.58	1-	
		2695.11 17	100 ^{<i>a</i>} 3	258.45	2^{+}	
2996.27	$(1,2^{+})$	1240.0 4	<29 ^a	1756.68	$(1,2^+)$	
		2996.0 ^{&} 3	100 ^{<i>d</i>} 6	0.0	0^{+}	
3064.0		1881.1 ^{<i>a</i>} 3	100 18	1182.98	5-	
21/24	(12-)	$2394.8^{\circ} 8$	23.9	668.38	4'	
3163.4	(13^{-}) (1.2^{+})	$600.70^{\circ} 25$	100	2562.65	(11^{-})	
5104.0	(1,2)	$3165.5^{a}.9$	<38	238.43	2 0+	
3166 65	(1.2^{+})	1114.90° 25	100^{d} 23	2051 55	0	
5100.05	(1,2)	1508 7 <mark>&</mark> 3	$\frac{100}{77}\frac{23}{18}$	1657 77	0^{+}	
		1802.60° 25	82d o	1057.77	0 2+	
32/13 11		$2060 \ 10^{ah} \ 7$	100^{h} 20	1182.08	2 5-	
5245.11		2000.10 7 2072.4 ^{<i>a</i>} 5	65 25	1171 35	5 6 ⁺	
3255 45	$(2 3^{+})$	$1129.2^{\&}9$	100^{d} 9	2126.46	$(1^+ 2^+)$	
5255.15	(2,5))	$1678.7\frac{\&}{3}$	56^{d} 7	1576.63	3+	
		1981 3 & 3	22^{d} 4	1274 34	2+	
		$2293 2^{ac} 4$	58^{d} 4	960.72	3-	E : noor fit difference between energies of corresponding levels equals 2294.77.17
		2996.87.26	76^{d} 4	258.45	2+	Ly. poor n., underled between energies of corresponding levels equals 229 1.77 17.
3273.7		2102.3^{a} 9	100	1171.35	2 6 ⁺	
3283.15	$(1^{-},2^{+})$	836.03 ^{&} 17	6.9^{d} 13	2446.89	(3^{-})	
0200.10	(- ,-)	915.10 ^{&} 25	4.1^{d} 9	2368.08	$(1^{-},2^{+})$	
		$1625.0^{\&}3$	$34^{d}6$	1657 77	0+	
		2322 38 19	17.8^{d} 0	960 72	3-	
		2358 89 19	100^{d} 3	974 58	1-	
		200009 19	100 5	1.50	1	

From ENSDF

$\gamma(^{146}Ce)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I _γ ‡	$E_f \qquad J_f^{\pi}$	Comments
3283.15	$(1^{-},2^{+})$	3024.9 3	30.3 ^d 19	258.45 2+	
3329.54	(2^{+})	466.80 ^{&c} 25	<7.3 ^d	2861.88 (1,2 ⁺)	E_{γ} : poor fit, difference between energies of corresponding levels equals 467.66 16.
		1673.1 <mark>&c</mark> 2	16.8 ^d 15	1657.77 0+	E_{γ} : poor fit, difference between energies of corresponding levels equals 1671.75 15.
		1752.9 ^{&} 2	<7.3 ^d	1576.63 3+	
		2368.80 ^{&} 18	23.4 ^d 15	960.72 3-	
		2404.6 3	39.4 ^d 22	924.58 1-	
		3071.4 <i>3</i>	100 ^d 7	258.45 2+	
3342.03		927.6 ^{&} 2	41 ^{<i>d</i>} 6	2414.51 (4+)	
		1585.2 ^{&} 4	13 d 3	1756.68 (1,2+)	
		1960.14 17	23.4 ^d 16	1381.93 2+	
		2381.1 ^{<i>a</i>} 4	39 <i>13</i>	960.72 3-	
		2417.38 15	88 ^d 5	924.58 1-	
		3083.57 22	100 d 6	258.45 2+	
3390.2		2721.8 ^{<i>a</i>} 6	100	668.38 4+	
3399.56	$(1,2^{+})$	1348.4 ^{<i>x</i>} 3	<17 ^{<i>a</i>}	2051.55	
		1643.00 ^{<i>x</i>} 18	34 ^{<i>a</i>} 4	1756.68 (1,2 ⁺)	
		1741.5 2	19 ^{<i>a</i>} 4	1657.77 0+	
a (0a a		2474.90 ^{&} 18	100 ^{<i>a</i>} 7	924.58 1-	
3403.3		2734.6^{a} 5	100 22	668.38 4 ⁺	
3450.6		$2267.6^{a}.4$	100	$238.43 2^{-1}$ 1182 98 5 ⁻¹	
3457.86		$1043 30^{\&} 25$	36 ^d	$241451(4^+)$	
5157.00		1013.30° 23	37 d	$1756\ 68\ (1\ 2^+)$	
		2533.20 18	100 d	924 58 1-	
3494.51		924.63 ^{<i>a</i>} 9	94	2569.86	
		3236.8 ^{<i>a</i>} 6	100	258.45 2+	
3502.20		2319.2 ^{<i>a</i>} 2	100	1182.98 5-	
3532.7		2349.7 ^{<i>u</i>} 4	100	1182.98 5-	
3535.16		1167.2 2	100^{a} 12	2368.08 (1 ⁻ ,2 ⁺)	
2652 7	(2^{+})	3275.95	74 ⁴ 6	$258.45 \ 2^{+}$	
3033.7	(2^{+})	2985.2" 0 3653.7 <mark>4</mark> 6	67	$008.38 4^{\circ}$ 0 0 0 ⁺	
3729.9		2547.3 ^{<i>a</i>} 8	41 15	1182.98 5-	
		3061.4 ^{<i>a</i>} 4	100 15	668.38 4+	
3826.0	(15 ⁻)	662.60 ^b 25	100 ^e	3163.4 (13-)	
3859.1		3600.6 ^{<i>a</i>} 5	100	258.45 2+	
3918.0		3249.6 ^{<i>a</i>} 6	100	668.38 4+	

From ENSDF

146 58
ĉ
88
.12

$\gamma(^{146}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡	E_f	\mathbf{J}_{f}^{π}
3956.66		1734.2 ^{&} 3	40 ^{<i>d</i>} 7	2222.71 (3,4+)	4410.93		3449.3 <mark>&</mark> 8	<43 ^d	960.72	3-
		3698.00 <mark>&</mark> 23	100 d 13	258.45 2+			3486.2 <mark>&</mark> 5	<43 ^d	924.58	1-
3978.4	(3 ⁻ ,4 ⁺)	2427.0 ^a 6	100 13	1551.13 5-			4152.8 <mark>&</mark> <i>3</i>	100 d 9	258.45	2^{+}
		3720.3 ^a 8	36 10	258.45 2+	4497.1		4238.6 ^{<i>a</i>} 9	100	258.45	2^{+}
4089.70		2333.00 ^{&} 18	100 d	1756.68 (1,2 ⁺)	4521.7		2645.5 ^a 7	58 18	1875.55	(4,5 ⁻)
4190.4		3522.0 ^a 6	100	668.38 4+			2971.6 ^a 7	67 21	1551.13	5-
4210.0		3541.6 ^a 5	100	668.38 4+			3339.3 ^a 6	73 18	1182.98	5-
4255.3		3295.4 ^a 10	17 6	960.72 3-			3560.3 ^a 7	30 18	960.72	3-
		3586.7 ^a 4	100 15	668.38 4+			3852.8 ^{<i>a</i>} 6	100 18	668.38	4+
4269.4		2237.8 ^{<i>a</i>} 4	100	2031.43 (4+)	4690.04	$(1,2^+)$	1826.6 ^{&} 6	60 ^d 20	2861.88	$(1,2^+)$
		3098.3 ^a 6	50	1171.35 6+			3765.5 <mark>&</mark> 5	<100 ^d	924.58	1-
4410.93		1964.2 ^{&} 4	17 d 4	2446.89 (3-)			4431.7 <mark>&</mark> 4	70 ^d 10	258.45	2^{+}
		1968.2 <mark>&</mark> 4	<43 ^d	2442.40			4690.2 ^{&} 3	40 ^d 10	0.0	0^{+}
		3027.9 <mark>&</mark> 8	<43 ^d	1381.93 2+						

[†] From weighted average of E γ 's measured in ¹⁴⁶La β ⁻ decays with T_{1/2}=6.1 s and 9.8 s, and ²⁵²Cf SF decay, except as noted.

[‡] From ¹⁴⁶La β^- decay (9.8 s), except as noted.

[#] From $\gamma\gamma(\theta)$, $\alpha(\exp)$, see 1981GoZN, 1982ShZV, 1983Wo03, 1993Sh10, 2000Ya08.

[@] From $\gamma\gamma(\theta)$ (2000Ya08).

12

[&] From ¹⁴⁶La β^- decay (6.1 s).

^{*a*} From ¹⁴⁶La β^- decay (9.8 s).

^b From ²⁵²Cf SF decay.

^c Energy of γ ray is not used in a least-squares fitting. ^d Branching from ¹⁴⁶La β^- 6.1 s decay. ^e Branching from ²⁵²Cf SF decay.

^{*f*} Additional information 1.

^g Multiply placed with undivided intensity.

^{*h*} Multiply placed with intensity suitably divided.

Level Scheme

¹⁴⁶₅₈Ce₈₈

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

¹⁴⁶₅₈Ce₈₈

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

¹⁴⁶₅₈Ce₈₈

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁴⁶₅₈Ce₈₈

Level Scheme (continued)

¹⁴⁶₅₈Ce₈₈

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

¹⁴⁶₅₈Ce₈₈

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

¹⁴⁶₅₈Ce₈₈

¹⁴⁶₅₈Ce₈₈