Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. Browne, J. K. Tuli	NDS 110,507 (2009)	1-Oct-2008						

 $S(n)=1.36\times10^4 \text{ syst}; S(p)=-1736 7; Q(\alpha)=4.4\times10^3 \text{ syst}$ 2012Wa38

Note: Current evaluation has used the following Q record -1740 104070 syst 2003Au03.

2007Se06: Observed gs p decay to 144Er gs and a 1044% 21 branch to 2⁺ excited state.

2003Ka04: Observed 9.6% 15 p branch to 2⁺ level in 144Er.

2001Ry01, 2001Ry02: Fine structure, that is, decay to 2^+ in daughter ¹⁴⁴Er nucleus, was reported in preliminary form. 2000So11: 90 Zr(197 Au,x), E=30 MeV/nucleon. Identification using a 1200 mass separator at Michigan State University. 1998Ba13: 92 Mo(58 Ni,p4n) E=307 MeV (ORNL), g.s. to g.s. transition reported. Other: 1999BaZR.

Theoretical works:

2001Go20: β_2 =0.26, β_4 =-0.04, S(p)=-2.1 MeV.

1997Mo25: S(p)=-1.00 MeV, S(2p)=0.35 MeV, $Q(\alpha)=4.23 \text{ MeV}$, $T_{1/2}(\beta)=0.5117 \text{ s}$, $T_{1/2}(\alpha)=33110 \text{ s}$.

1995Mo29: $\beta_2 = 0.249$, $\beta_4 = -0.078$, $\beta_6 = 0.008$.

1995Ab38: β_2 =0.35, β_4 =-0.04, S(p)=-1.2 MeV.

1976Li30: S(p)=-1.45 MeV, $Q(\alpha)=4.73$ MeV.

¹⁴⁵Tm Levels

Cross Reference (XREF) Flags

A 58Ni(92 Mo,p4n γ)

E(level)	$J^{\pi^{\dagger}}$	T _{1/2}	XREF	Comments
0 [‡]	(11/2 ⁻)	3.17 µs 20	A	%p=100 (2007Se06) T _{1/2} : from 2007Se06. Others: 3.1 μs 3 (2003Ka04), 3.5 μs 10 (1998Ba13).
338.4 [‡] 4	$(15/2^{-})$		Α	
868.8 [‡] 7	(19/2 ⁻)		Α	
1555.0 [‡] 9	$(23/2^{-})$		Α	
2373.8 [‡] 11	$(27/2^{-})$		Α	
3311.5 [‡] <i>14</i>	$(31/2^{-})$		Α	

[†] From gs rotational band properties similar to expected for an h11/2 p decoupled band (2007Se06).

[‡] Band(A): Decoupled $\pi h_{11/2}$ band. Particle-rotor model and core- quasi-article model calculations consistent with presence of triaxility with asymmetry parameter $\gamma \approx 20^{\circ}$.

$\gamma(^{145})$	Tm

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
338.4	$(15/2^{-})$	338.4 4	100	0	$(11/2^{-})$
868.8	$(19/2^{-})$	530.4 5	100	338.4	$(15/2^{-})$
1555.0	$(23/2^{-})$	686.2 5	100	868.8	$(19/2^{-})$
2373.8	$(27/2^{-})$	818.8 7	100	1555.0	$(23/2^{-})$
3311.5	$(31/2^{-})$	937.7 8	100	2373.8	$(27/2^{-})$

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

¹⁴⁵₆₉Tm₇₆

Adopted Levels, Gammas

¹⁴⁵₆₉Tm₇₆