144 Nd(α ,3n γ) 1977Ha04,1975Kl01

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. Browne, J. K. Tuli	NDS 110, 507 (2009)	1-Oct-2008						

E=37 MeV (1977Ha04); E=40 MeV (1975Kl01).

Measured: γ , $\gamma\gamma$, $\gamma(\theta)$, yield, $\gamma(t)$ (1977Ha04,1975Kl01).

Decay scheme is mostly from 1977Ha04 and 1991Pi06 (α ,4n γ).

¹⁴⁵Sm Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	7/2-		
893.0 3	$\frac{3}{2}$	13.5 ns 15	$T_{\rm even}$ we see 15 ng 2 (1077 H_004) 12 ng 2 (1075 $C101$)
1422.97 24	$9/2^{-}$	15.5 118 15	$1_{1/2}$. we av. 15 hs 2 (197711a04), 12 hs 2 (1975C101).
1538.01 16	$11/2^{-}$		
1706.03 20	9/2-		
1774.0 4	$(15/2^+)$		
17/4.1 3	$(9/2)^{-}$		J ^{<i>n</i>} : From Adopted Levels, Gammas.
2049.93 23	13/2 $17/2^{-}$	≈5 lis	
2437.98 25	$17/2^+$		
2710.4 3	19/2-		
2931.3 <i>3</i>	21/2+		
2965.0 4	$19/2^{(+)}$		
2978.6 3	$21/2^+$		
3369 4 4	25/2+		not confirmed In (HI xny) 438y placed elsewhere
3483.3 4	$\frac{25}{2}^{+}$		not comment in (right), toof placed else mere.

[†] Adopted values.

$\gamma(^{145}\text{Sm})$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{\dagger}	Comments
140.2 <i>2</i> 168.0 <i>3</i>	9.7 8 1.4 <i>3</i>	3119.3 1706.03	23/2 ⁺ 9/2 ⁻	2978.6 1538.01	21/2 ⁺ 11/2 ⁻	D M1+E2	0.383 9	Mult.: $A_2=-0.18 I$, $A_4=+0.01 I$. $\alpha(K)=0.29 4$; $\alpha(L)=0.070 24$; $\alpha(M)=0.016 6$;
								$\alpha(N+)=0.0040\ 14$ $\alpha(N)=0.0035\ 12;\ \alpha(O)=0.00048\ 14;$
								$\alpha(P)=1.7\times10^{-5}$ 5 Mult.: A ₂ =+0.38 <i>18</i> .
180.0 2	33 <i>3</i>	2230.0	$17/2^{-}$	2049.95	$15/2^{-}$	D+Q		Mult.: $A_2^2 = +0.09 \ 8, A_4 = +0.10 \ 10.$
188.5 2	13 <i>I</i>	3119.3	$\frac{23}{2^+}$	2931.3	$21/2^{+}$	D		Mult.: $A_2 = -0.18 \ 8, A_4 = +0.14 \ 10.$
^x 208.1 2	2.5 5					D+Q,Q		Mult.: $A_2 = +0.31$ 2, $A_4 = -0.07$ 7.
221.0 2	6.0 5	2931.3	$21/2^{+}$	2710.4	$19/2^{-}$	D		Mult.: $A_2 = -0.21$ 5, $A_4 = -0.02$ 3.
268.0 2	15.0 12	2978.6	$21/2^{+}$	2710.4	$19/2^{-}$	D		Mult.: $A_2 = -0.21$ 17, $A_2 = +0.17$ 11.
283.1 <i>3</i>	0.7 1	1706.03	$9/2^{-}$	1422.97	$9/2^{-}$			Mult.: $A_2 = -0.03 2$, $A_4 = +0.08 2$.
364.0 2	11.0 10	3483.3	$25/2^+$	3119.3	$23/2^{+}$	D		Mult.: A ₂ =+0.03 7, A ₄ =+0.06 10.
433.0 <i>3</i>	1.0 4	1538.01	$11/2^{-}$	1105.01	$13/2^{+}$			
438.1 2	10.8 8	3369.4	25/2+	2931.3	21/2+	E2	0.0184	α (K)=0.01494 21; α (L)=0.00270 4; α (M)=0.000594 9; α (N+)=0.0001526 22
								$\alpha(N)=0.0001329 \ 19; \ \alpha(O)=1.89\times10^{-5} \ 3;$
								$\alpha(P) = 8.48 \times 10^{-7} I2$
								Mult.: $A_2 = +0.37$ 6, $A_4 = -0.16$ 11.
480.4 2	31.0 25	2710.4	19/2-	2230.0	$17/2^{-}$	D		Mult.: $A_2 = -0.03 6$, $A_4 = +0.16 8$.

Continued on next page (footnotes at end of table)

¹⁴⁴Nd(α ,3n γ)

1977Ha04,1975Kl01 (continued) γ (¹⁴⁵Sm) (continued) α^{\dagger} Mult.[‡] E_i(level) J_{f}^{π} Comments E_{γ} I_{γ} \mathbf{E}_{f} 493.6 2 30 2 2931.3 $21/2^{+}$ 2437.98 17/2+ E2 0.01327 *α*(K)=0.01089 *16*; *α*(L)=0.00187 *3*; $\alpha(M)=0.000409$ 6; $\alpha(N+..)=0.0001056$ 15 α (N)=9.18×10⁻⁵ 13; α (O)=1.314×10⁻⁵ 19; $\alpha(P)=6.26\times10^{-7}$ 9 Mult.: $A_2 = +0.39 4$, $A_4 = -0.03 5$. 540.0 3 1.0 4 2978.6 $21/2^{+}$ 2437.98 17/2+ x580.9 2 1.0 4 669.0 3 1.8 3 $(15/2^+)$ 0.0083 22 α =0.0083 22; α (K)=0.0070 19; 1774.0 1105.01 13/2+ M1+E2 α (L)=0.00100 21; α (M)=0.00021 5; α (N+..)=5.6×10⁻⁵ 12 $\alpha(N) = 4.8 \times 10^{-5} \ 10; \ \alpha(O) = 7.2 \times 10^{-6} \ 16;$ $\alpha(P) = 4.3 \times 10^{-7} \ 13$ Mult.: A₂=+0.05 6, A₄=+0.19 8. $19/2^{(+)}$ 735.0 2 9.7 15 2965.0 2230.0 $17/2^{-}$ D Mult.: A₂=-0.21 11, A₄=+0.10 10. E2 893.6 3 2.7 5 893.6 $3/2^{-}$ 0.0 $7/2^{-}$ 0.00316 5 α =0.00316 5; α (K)=0.00267 4; α (L)=0.000385 6; α (M)=8.29×10⁻⁵ 12; α (N+..)=2.16×10⁻⁵ 3 $\alpha(N)=1.87\times10^{-5}$ 3; $\alpha(O)=2.76\times10^{-6}$ 4; $\alpha(P)=1.586\times10^{-7}$ 23 Mult.: $A_2 = +0.30 I$, $A_4 = +0.19 2$. 944.9 2 1105.01 13/2+ Mult.: A₂=-0.22 3, A₄=+0.10 8. 43.2 30 2049.95 $15/2^{-}$ D 0.00419 6 1105.0 2 100 5 1105.01 $13/2^{+}$ $0.0 \quad 7/2^{-}$ E3 α =0.00419 6; α (K)=0.00348 5; α(L)=0.000552 8; α(M)=0.0001200 17; α (N+..)=3.13×10⁻⁵ 5 $\alpha(N)=2.71\times10^{-5}$ 4; $\alpha(O)=3.97\times10^{-6}$ 6; $\alpha(P)=2.16\times10^{-7}$ 3; $\alpha(IPF)=6.84\times10^{-8}$ 12 B(E3)(W.u.)=36 4 Mult.: $A_2 = +0.42$ 2, $A_4 = +0.05$ 3. 33 3 2437.98 $17/2^{+}$ 1105.01 13/2+ E2 0.001412 20 α =0.001412 20; α (K)=0.001182 17; 1333.0 2 α (L)=0.0001598 23; α (M)=3.42×10⁻⁵ 5; α (N+..)=3.61×10⁻⁵ $\alpha(N)=7.73\times10^{-6}$ 11; $\alpha(O)=1.153\times10^{-6}$ 17; $\alpha(P)=7.04\times10^{-8}$ 10; α (IPF)=2.72×10⁻⁵ 4 Mult.: A₂=+0.30 *1*, A₄=-0.01 *3*. 1423.0 3 2.5 5 $9/2^{-}$ 0.0 $7/2^{-}$ 1422.97 1538.0 2 4.5 6 1538.01 $11/2^{-1}$ 0.0 $7/2^{-}$ Q Mult.: A₂=+0.25 10. $7/2^{-}$ 1706.0 3 2.6 6 1706.03 $9/2^{-}$ 0.0 M1+E2 0.00117 15 α =0.00117 15; α (K)=0.00086 13; α (L)=0.000113 16; α (M)=2.4×10⁻⁵ 4; α(N+..)=0.000169 10 $\alpha(N) = 5.5 \times 10^{-6} 8$; $\alpha(O) = 8.2 \times 10^{-7} 12$; $\alpha(P)=5.2\times10^{-8}$ 8; $\alpha(IPF)=0.000163$ 9 Mult.: A₂=+0.49 10, A₄=+0.35 17. 1774.1 3 1.0 5 1774.1 $(9/2)^{-}$ 0.0 7/2-

[†] Additional information 1.

^{\ddagger} Usually M2 cannot compete with E1; therefore, it is assumed that D+Q is M1+E2, not E1+M2.

 $x \gamma$ ray not placed in level scheme.

