Adopted Levels, Gammas

		Type] Author	History Citation Literature Cutoff Date						
Evil Ett											
		Full Evaluation	on E.E	srowne, J. K. Tuli	NDS 110,507 (2009)	1-Oct-2008					
$Q(\beta^{-})=1806$ Note: Curren Additional in	7; S(n)=6947 t evaluation l formation 1.	7 8; S(p)=6483 has used the fo	8; Q(α)= llowing Q	=884 9 2012Wa3 2 record 1805	38 76948 76484 88	81 8 2003Au03.					
¹⁴⁵ Pr Levels											
Cross Reference (XREF) Flags											
				$ \begin{array}{ccc} A & {}^{145}Ce \\ B & {}^{146}Nde \\ C & {}^{252}Cf \\ \end{array} $	β [–] decay (d, ³ He) E=50 MeV SF decay						
E(level) [†]	J^{π}	$T_{1/2}$	XREF		Cor	nments					
0.0	$7/2^{+}$	5.984 h 10	ABC	$\frac{1}{8}\beta^{-}=100$							
	.,_			J^{π} : L=4 in (d, ³ He) for the g.s. and 2 for 62 level with a connecting M1 transition establish $J^{\pi}(g.s.)=7/2^+$ and $J^{\pi}(62)=5/2^+$. T _{1/2} : from 1980Ge11. Others: 5.98 h 2 (1964Ho03), 5.95 h 7 (1954Ma07), 5.88 h 10 (1960Al33).							
62.65 1	5/2+	4.0 ns 16	ABC	T _{1/2} : from ²⁵² Cf SF decay (1974CIZX). J ^{π} : see comment for J ^{π} (g.s.).							
188.84 <i>1</i>	$(3/2)^+$		AB	J ^{π} : L=2, small σ in (d, ³ He) suggests low proton occupancy and therefore favors $3/2^+$ and not $5/2^+$ (d5/2).							
347.18 <i>1</i> 350 9 3	$\frac{3}{2^{+}}$		Ab Ab	J^{π} : M1 γ to $5/2^+$, $\gamma\gamma(\theta)$. J^{π} : from any (θ). (350 0)–1(62.6): M1 F2 or to $7/2^+$							
540.09 2	5/2		A	$J = 1000 \gamma_1(0) J(550.2) - J(02.0), W11, L2 \gamma to 1/2$.							
550	7/2+,9/2+		В	J^{π} : L=4 in (d, ³ He	e).						
554.81 <i>1</i>	3/2+		Α	J^{π} : γ to 7/2 ⁺ , $\gamma\gamma$	(θ) data.						
697.20 4			A								
786 01 J	$(2/2)^{-}$		AB	I^{π} , a to $5/2^{+}$ is E	$11 \log f = 4.04 \text{ from } 145$	Concerning compatible only with					
780.91 1	(3/2)		Λ	configuration= $(\pi 5/2[532])$ for 787.3 level in ¹⁴⁵ Pr and configuration= $(\nu 3/2[532])$ for ¹⁴⁵ Ce g.s.							
806.43 4	$(3/2)^+$		AB	J^{π} : L=2 in (d, ³ He	e), no γ to $7/2^+$.						
835.64 5			Α								
845.93 2			A								
859.4 <i>5 4</i> 948 4 <i>1</i>			A A	Logft=7.5 in 145	The β^- decay from $I^{\pi} = G^{\pi}$	3/2) ⁻ suggests possible spin/parity values					
210.11				of $1/2^+, 3/2^+$, o	$r 5/2^+$.	(2) suggests possible spin party values					
960 1046 97 4	$(7/2^+)$		B	J^{π} : L=(4) in (d, ³)	He).						
1110.56 <i>3</i>	$(5/2)^+$		AB	J^{π} : L=2 in (d, ³ He E(level): 1090 in	e), intense γ ray to 7/2 ⁺ (d. ³ He) (1981VaZI): 10	184 in (d ³ He) (1978SaZP).					
1210.54 2	5/2-		Α	J^{π} : M1 γ to $\pi = -$	γ rays to $3/2^+$ and $7/2$	$^{+} \gamma \text{ to } 7/2^{+} \text{ g.s.}$					
1244			В	·		-					
1318.4 <i>I</i>			A								
1330.1 1			AB								
1495 1560 46 5			х В								
1608.8 <i>1</i>			A								

[†] Deduced by evaluators from least-squares fit to γ -ray energies for levels populated in 145Ce β^- decay.

Adopted Levels, Gammas (continued)

$\gamma(^{145}\mathrm{Pr})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_j^{\mathbf{T}}$	f Mult.	α^{\ddagger}	Comments
62.65	5/2+	62.54 2	100	0.0 7/2	+ M1	5.02	$\begin{aligned} \alpha(\mathbf{K}) = 4.27 \ 6; \ \alpha(\mathbf{L}) = 0.593 \ 9; \\ \alpha(\mathbf{M}) = 0.1250 \ 18; \ \alpha(\mathbf{N}+) = 0.0328 \ 5 \\ \alpha(\mathbf{N}) = 0.0279 \ 4; \ \alpha(\mathbf{O}) = 0.00449 \ 7; \\ \alpha(\mathbf{P}) = 0.000328 \ 5 \\ \mathbf{B}(\mathbf{M}1)(\mathbf{W}, \mathbf{u}.) = 0.0037 \ 15 \end{aligned}$
188.84	$(3/2)^+$	126.07 2 188.85 <i>1</i>	77 2 100 3	62.65 5/2 0.0 7/2	+		
347.18	3/2+	158.5 <i>3</i> 284.53 <i>1</i>	0.36 7 100 <i>1</i>	188.84 (3/2 62.65 5/2	2) ⁺ + M1	0.0722	α (K)=0.0617 <i>9</i> ; α (L)=0.00831 <i>12</i> ; α (M)=0.001749 <i>25</i> ; α (N+)=0.000459 7
							α (N)=0.000391 6; α (O)=6.31×10 ⁻⁵ 9; α (P)=4.69×10 ⁻⁶ 7
350.9	5/2+	347.17 <i>1</i> 288.4 <i>1</i> 350.9	9.5 <i>1</i> 4.9 <i>5</i> 100 <i>1</i>	$\begin{array}{ccc} 0.0 & 7/2 \\ 62.65 & 5/2 \\ 0.0 & 7/2 \end{array}$	+ + + M1,E2	0.036 6	α (K)=0.030 6; α (L)=0.00471 9; α (M)=0.001004 15; α (N+)=0.000260
							$\alpha(N)=0.000223 \ 4; \ \alpha(O)=3.49\times10^{-5} \ 14; \ \alpha(P)=2.2\times10^{-6} \ 5$
540.09		189.2 <i>3</i> 193.01 <i>7</i> 350.9 477.2 <i>1</i>	22.7 7 12.3 <i>13</i> 100 <i>1</i> 5.8 7	350.9 5/2 347.18 3/2 188.84 (3/2 62.65 5/2	+ + 2) ⁺ +		
554.81	3/2+	540.36 5 204.07 207.61 365.8 492.21 3	44 <i>1</i> 72.4 8 174 2 52.0 <i>12</i> 100 <i>4</i>	0.0 7/2 350.9 5/2 347.18 3/2 188.84 (3/2 62.65 5/2	· + + 2) ⁺ -		
697.20		554.83 <i>3</i> 349 507.4 <i>2</i> 634.54 <i>6</i>	25.6 <i>4</i> 13 <i>5</i> 100 <i>3</i>	$\begin{array}{cccc} 0.0 & 7/2 \\ 347.18 & 3/2 \\ 188.84 & (3/2 \\ 62.65 & 5/2 \end{array}$	+ + 2) ⁺ +		
766.31 786.91	(3/2)-	211.46 <i>3</i> 232.08 <i>1</i> 246.88 <i>3</i> 435.99 <i>4</i> 439.71 <i>4</i> 597 9 <i>1</i>	$ \begin{array}{r} 100 \\ 3.45 & 6 \\ 0.24 & 1 \\ 2.04 & 4 \\ 11.4 & 2 \\ 0.66 & 5 \end{array} $	554.81 3/2 554.81 3/2 540.09 350.9 5/2 347.18 3/2	+ + + +		
		724.33 3	100.0	62.65 5/2 ⁻	+ E1	1.68×10 ⁻³	$\alpha(K)=0.001447 \ 21; \ \alpha(L)=0.000184 \ 3; \\ \alpha(M)=3.84\times10^{-5} \ 6; \\ \alpha(N+)=1.004\times10^{-5} \ 14 \\ \alpha(N)=8.56\times10^{-6} \ 12; \ \alpha(O)=1.376\times10^{-6} \ 12; \ \alpha(O)$
806.43 835.64	$(3/2)^+$	743.76 <i>4</i> 773 19 6	100 100 <i>16</i>	$62.65 5/2^{-1}$	+ +		20; $\alpha(P)=1.011\times10^{-7}$ 15
845.93		835.0 <i>1</i> 498.97 <i>3</i> 657.2 <i>1</i> 783.09 <i>3</i>	13 3 15.1 3 10 3 100 2	0.0 7/2 347.18 3/2 188.84 (3/2 62.65 5/2	+ + 2) ⁺		
859.43		845.88 5 304.66 7 319.4 <i>I</i> 512.21 7	12.8 3 11.4 7 3.6 7 100 21	0.0 7/2 554.81 3/2 540.09 347.18 3/2	+ +		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{145}Pr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.	α^{\ddagger}	Comments
859.43		670.6 <i>1</i>	63	188.84	$(3/2)^+$			
948.4		885.5 1	100 /	62.65	5/2 '			
1046.07		948.6 1	53 /	0.0	1/2			
1040.97		507.5 Z	57.2	250.0	5/2+			
		093.95 0 959 11 6	37 3	100 04	$\frac{3}{2}$			
		030.11 0 1047 07 6	53 3	100.04	(3/2) $7/2^+$			
1110 56	$(5/2)^+$	750 74 5	1365	350.0	5/2+			
1110.50	(3/2)	763 24 6	3312	347 18	3/2+			
		921 44 6	6.0.2	188 84	$(3/2)^+$			
		1110 68 4	100.2	0.0	(3/2) $7/2^+$			
1210.54	$5/2^{-}$	350.94	9.8.7	859.43	1/2			
121010	0/=	364.6 1	0.39 6	845.93				
		423.60 3	42 1	786.91	$(3/2)^{-}$	M1	0.0257	$\alpha(K)=0.0220 \ 3; \ \alpha(L)=0.00292 \ 4;$
					(-1)			$\alpha(M)=0.000614$ 9; $\alpha(N+)=0.0001612$ 23
								$\alpha(N)=0.0001373\ 20;\ \alpha(O)=2.22\times10^{-5}\ 4;$
								$\alpha(P)=1.660\times10^{-6}\ 24$
		444.04 7		766.31				
		512.61 8	1.9 7	697.20				
		655.95 7	10.3 7	554.81	$3/2^{+}$			
		670.6 <i>1</i>	5.2 7	540.09				
		859.61 6	18 <i>1</i>	350.9	$5/2^{+}$			
		863.31 6	2.6 1	347.18	$3/2^{+}$			
		1148.03 4	100 1	62.65	$5/2^{+}$			
		1210.63 4	10.3 6	0.0	$7/2^{+}$			
1318.4		472.8 <i>1</i>	40 10	845.93				
		482.5 <i>1</i>	100 10	835.64				
1330.1		524.8 <i>4</i>	13 7	806.43	$(3/2)^+$			
		979.17 6	100 7	350.9	$5/2^{+}$			
1560.46		701.4 2	17 8	859.43				
		714.3 5	33 17	845.93				
		863.6 1	17.8	697.20	(2)(2)+			
		13/1.1 1	100 8	188.84	$(3/2)^{+}$			
		1497.77	6/8	62.65	5/2			
1600.0		1560.58 8	50 25	0.0	1/2*			
1008.8		102.12 772.24 6	13 8	043.93 025 44				
		//3.24 0 801 7 2	38 8 10 1	806 42	$(3/2)^+$			
		011 01 9	19 4	607.20	$(3/2)^{-1}$			
		1545 7 2	100 4	62.65	5/2+			
		1607 1 2	84	02.03	7/2+			
		1007.12	04	0.0	112			

[†] From ¹⁴⁵Ce β^- decay.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{145}_{59}\mathrm{Pr}_{86}$

 \mathbf{v}

 $^{145}_{59}\mathrm{Pr}_{86}$ -5

From ENSDF

Level Scheme (continued)

Adopted Levels, Gammas

 $^{145}_{59}\mathrm{Pr}_{86}$ -5