¹⁴⁵Sm ε decay 1977Ro29,1983Vo10

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 110, 507 (2009)	1-Oct-2008

Parent: ¹⁴⁵Sm: E=0.0; $J^{\pi}=7/2^-$; $T_{1/2}=340 \text{ d} 3$; $Q(\varepsilon)=620 3$; $\%\varepsilon$ decay=100.0 Others: 1970Be65, 1981BeYJ, 1988Ta03.

¹⁴⁵Pm Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0.0 61.22 2	5/2 ⁺ 7/2 ⁺	2.64 ns 6	$T_{1/2}$: weighted average of 2.69 ns 9 (1967Ba22), 2.61 ns 10 (1967My01), 2.6 ns 2 (1959Br65), 2.7 ns 2 (1962Be31)
492.55 7	$3/2^{+}$		2.7 hs 2 (19020031).

ε radiations

For internal bremsstrahlung spectra see 1959Br65, 1977Ro29. I(K x ray)=133.3% 19 (1991Pl01). Other: 134% 4 (1991ChZZ). I(ce)=81.1% 21 (1991ChZZ).

E(decay)	E(level)	$I\varepsilon^{\dagger\ddagger}$	Log ft	Comments
(127 3)	492.55	0.0033 2	9.45 ¹ <i>u</i> 5	ϵ K=0.332 <i>17</i> ; ϵ L=0.491 <i>12</i> ; ϵ M+=0.177 <i>5</i> $I\epsilon$: ϵ K(exp)=0.27 <i>3</i> (1971My01); ϵ (L+M+N)/ ϵ K(exp)=0.6 <i>I</i> (1959Br65).
(559 3)	61.22	91.4 8	7.79 1	ϵK =0.8281; ϵL =0.1331; ϵM +=0.03881 I ϵ : $\epsilon K(exp)$ =0.828 20, $\epsilon L(exp)/\epsilon K(exp)$ =0.162 18 (1981BeYJ); $\epsilon (L+M+N)/\epsilon K(exp)$ =0.20 2 (1959Br65)
(620 3)	0.0	8.6 8	8.91 4	ε K=0.8302; ε L=0.1315; ε M+=0.03827

[†] εK(exp)(61)=0.828 20, εK(exp)(61)/εL(exp)(61)=0.162 18 (1981BeYJ); εK(exp)(g.s.)/εK(exp)(61)=0.08 2, ε(L+M+N)(61)/εK(exp)(61)=0.20 2, ε(L+M+N)(493)/εK(exp)(493)=0.6 1 (1959Br65); εK(exp)(493)/εK(exp)(61)=0.428 29 (1983Vo10); see also 1991Pl01.

[‡] Absolute intensity per 100 decays.

$\gamma(^{145}\text{Pm})$

Iγ normalization: I(61.1γ)=12.15% 10 (1991Pl01).

Measured KLL Auger spectrum (2000KoZR), see reference for KLL component energy, intensities. KL₁L₂ Auger transition intensity ratio $({}^{3}P_{0}/{}^{1}P_{1})=0.45 \ I \ (2000KoZQ)$ agrees well with theoretical value (2000KoZQ). Deduced K atomic level width from 61.2 γ ce line (2000KoZO).

$E_{\gamma}^{\#}$	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
61.2265 17	100	61.22	7/2+	0.0 5/2+	M1+(E2)	<0.045	6.39	$\begin{aligned} &\alpha(\mathbf{K}) = 5.40 \ 8; \ \alpha(\mathbf{L}) = 0.774 \ 14; \ \alpha(\mathbf{M}) = 0.165 \ 3; \\ &\alpha(\mathbf{N}+) = 0.0432 \ 8 \\ &\alpha(\mathbf{N}) = 0.0372 \ 7; \ \alpha(\mathbf{O}) = 0.00560 \ 9; \\ &\alpha(\mathbf{P}) = 0.000349 \ 5 \\ &\alpha(\mathbf{K}) = 5.5225 \ 17; \ \alpha(\mathbf{L}) = 0.786 \ 9; \ \alpha(\mathbf{M}) = 0.1674 \\ &19; \ \alpha(\mathbf{N}+) = 0.0472 \ 5 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) > 0.0048; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) < 1.5 \end{aligned}$

				¹⁴⁵ Sm	ε deca	y 1977Ro29,1983Vo10 (continued)
						γ ⁽¹⁴⁵ Pm) (continued)
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
						E _γ : Measured E(ce(K))(2000KOZU). I _γ : I _γ =12.15% 10 (1991Pl01). Other: 12.2% 2 (1991ChZZ). Mult.: α (K)exp=5.3 <i>I</i> , K/L=6.5 <i>4</i> , L/M=5.1 <i>3</i> (1959Br65); K/L=8.1 <i>8</i> , L/M=4.0 8 (1959Dz06); L1/L2=11.1 <i>I</i> 2, L1/L3=39 6, L2/L3=3.5 6 (1967Ba22).
431.4 <i>5</i> 492.55 <i>7</i>	0.00043 <i>3</i> 0.027 <i>1</i>	492.55 492.55	3/2+ 3/2+	61.22 0.0	7/2 ⁺ 5/2 ⁺	I_{γ} : I(431γ)/I(492γ)=0.016 <i>1</i> (1977Ro29). Other:<0.022 (1983Vo10). E_{γ} : other: 492.31 <i>15</i> (1971My01).

[†] Additional information 1.
[‡] From 1983Vo10; 1977Ro29 did not observe the 120.8γ reported by 1970Be65.
[#] From 1983Vo10 except 431γ which is from 1977Ro29.
[@] For absolute intensity per 100 decays, multiply by 0.1215 *10*.

¹⁴⁵Sm ε decay 1977Ro29,1983Vo10

Decay Scheme

