¹⁴⁵Pm ε decay **1974To04,1959Br65**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	E. Browne, J. K. Tuli	NDS 110, 507 (2009)	1-Oct-2008		

Parent: ¹⁴⁵Pm: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=17.7$ y 4; $Q(\varepsilon)=163.4$ 22; % ε decay=100.0

Additional information 1.

Measured: E γ , I γ , K x ray, (K x ray) γ -coin (1974To04,1959Br65), γ (t) (1959Br65,1967My01,1970Ka36). I(K x ray)/I(67 γ +72 γ)=23.8 7 (1959Br65), L x ray/K x ray=0.161 *16* (1972Ni16); I(K x ray)/I(67 γ +72 γ)=23.3 20 (1971Ge11).

145Nd Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡
0.0	$7/2^{-}$	
67.2 1	$3/2^{-}$	29.4 ns 10
72.4 1	$5/2^{-}$	0.72 ns 5

[†] Adopted values.

[±] Quoted by 1970Ka36 (see 1967My01). See also 1959Br65.

 ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(91.0 22)	72.4	10.3 5	8.03 5	εK=0.636 10; εL=0.275 8; εM+=0.089 3
				I ε : From Ti(72 γ)=10.3% 5.
(96.2 22)	67.2	7.2 4	8.26 4	ε K=0.657 9; ε L=0.260 6; ε M+=0.0834 22
				I ε : From Ti(67 γ)=7.2% 4.
				I ε : ε (L+M+N)/ ε K(exp)=0.85 3 (1959Br65); ε K(exp)/ ε (K+L+)=0.606 25 (1974To04).
(163.4 22)	0.0	82.5 10	7.85 2	ε K=0.7654 16; ε L=0.1797 12; ε M+=0.0548 5
				I ε : I ε =100-Ti(67)-I(72)=100 - (329 6 + 465 8)x0.022 1=82.5% 10, deduced by
				evaluators.

[†] Absolute intensity per 100 decays.

$\gamma(^{145}\text{Nd})$

I γ normalization: From I(K x ray)/I(67 γ +72 γ)=23.7 7, weighted average of 23.8 7 (1959Br65) and 23.3 20 (1971Ge11); I γ (67 γ + 72 γ)=131.0 5, ε K(exp)(g.s.)/ ε K(exp)(67 7272 levels)=5.9 3 (1959Br65), and theoretical ε (K)/ ε (Total) ratios for the ground state and 67 7272 levels.

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
67.2 1	31.0 5	67.2	3/2-	0.0 7/2-	E2	9.49	$ \begin{array}{l} \alpha(\text{K})=3.32 \ 5; \ \alpha(\text{L})=4.81 \ 8; \ \alpha(\text{M})=1.102 \ 18; \ \alpha(\text{N}+)=0.268 \ 5\\ \alpha(\text{N})=0.237 \ 4; \ \alpha(\text{O})=0.0300 \ 5; \ \alpha(\text{P})=0.0001419 \ 21\\ \text{I}_{\gamma}: \text{ Weighted average of } \text{I}_{\gamma}=31.3 \ 5 \ (1992\text{Call}), \ \text{I}_{\gamma}=29.9 \ 8\\ (1974\text{To04}), \ \text{and } \text{I}_{\gamma}=31.7 \ 5 \ (1971\text{Gell}). \text{ Other value: } \text{I}_{\gamma}=23 \ 5\\ (1959\text{Br65}). \end{array} $
72.4 1	100	72.4	5/2-	0.0 7/2-	M1	3.59	Mult.: From α (K)exp=3.3, K/L=1.1 2. α (K)=3.05 5; α (L)=0.426 7; α (M)=0.0905 14; α (N+)=0.0235 4 α (N)=0.0203 3; α (O)=0.00307 5; α (P)=0.000198 3 Mult.: From α (M)exp(72)=0.12 3, deduced by evaluators from K(72)/K(67)=2.3 2, K(72)/M(72)=19 4 (1959Br65), and I γ (72)=100, I γ (67)=31.0 5.

Continued on next page (footnotes at end of table)

 $^{145}\mathbf{Pm}\ \varepsilon$ decay 1974To04,1959Br65 (continued)

 γ (¹⁴⁵Nd) (continued)

[†] Additional information 2.
[‡] For absolute intensity per 100 decays, multiply by 0.022 *I*.

¹⁴⁵Pm ε decay 1974To04,1959Br65

Decay Scheme

