¹⁴⁵Ba β⁻ decay 1978Pf02,1997Gr09

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. Browne, J. K. Tuli	NDS 110, 507 (2009)	1-Oct-2008					

Parent: ¹⁴⁵Ba: E=0.0; $J^{\pi}=5/2^{-}$; $T_{1/2}=4.31$ s *16*; $Q(\beta^{-})=4923$ 65; $\%\beta^{-}$ decay=100.0 1982ChZV.

Additional information 1.

Measured: γ , $\gamma\gamma$, $\gamma(t)$, ce, β , $\beta\gamma$ (1978Pf02), γ , $\gamma\gamma$ (1982ChZV). Others: 1969WiZX, 1970OsZZ, 1971Ho29.

A deduced (using RADLST) average radiation energy of 5198 keV 73 from this decay scheme, is in fair agreement with a $Q(\beta^-)$ value of 4923 keV 65 from the latest atomic mass adjustment (2003Au03). This agreement suggests the decay scheme is reasonably complete. In addition, this decay scheme is consistent with a total β^- average energy of 1277 keV, a neutrino average energy of 1820 keV, and an average γ -ray energy of 2071 keV. That is, most of the radiation energy is carried by γ rays and neutrinos.

¹⁴⁵La Levels

Except for the 2566.4-keV level, all levels above 1177 keV are pseudolevels, deduced from total γ -ray absorption spectrometer measurements.

E(level)	$J^{\pi \dagger}$	T _{1/2}	E(level)	E(level)
0.0	$(5/2^+)$	24.8 s 20	973.6	2566.4
65.9 2	$(7/2^+)$		1033.5?	2600‡
96.6 2	(*)		1176.8?	2700 [‡]
189.0 2	(*)		1300 [‡]	2800 [‡]
237.9 2	$(9/2^+)$		1400 [‡]	2900 [‡]
351.5 <i>3</i>	(*)		1500 [‡]	3000 [‡]
475.3 <i>3</i>			1600 [‡]	3100 [‡]
492.2			1700 [‡]	3200 [‡]
514.2			1800 [‡]	3300 [‡]
544.0 <i>3</i>			2000 [‡]	3400 [‡]
598.9 2			2100 [‡]	3500 [‡]
637.5?			2200 [‡]	3600 [‡]
734.0 2			2300 [‡]	3700 [‡]
827.0?			2400 [‡]	3800 [‡]
922.4? 5	$(5/2^+, 7/2)$		2500 [‡]	3900 [‡]

[†] The ¹⁴⁵La levels: 0, 96.6, 189.0, 351.5 and probably 65.9 are interconnected by M1,E2 transitions and therefore have the same parity.

^{\ddagger} "Pseudo level" from total γ -ray absorption spectrometer measurements (1997Gr09).

β^{-} radiations

 $E\beta^{-}=4855\ 170,\ 4570\ 200,\ 4500\ 200,\ 4230\ 170\ from\ \beta\gamma;\ E\beta^{-}=4920\ 120\ (single\ \beta^{-}spectrum)\ (1978Pf02).$

 β^{-} feedings to the various pseudolevels are from total absorption γ -ray spectrometer measurements (1997Gr09, 1996Gr20).

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(1.02 \times 10^{3} 7)$ $(1.12 \times 10^{3} 7)$ $(1.22 \times 10^{3} 7)$	3900	0.161	5.0	av $E\beta$ =353 27
	3800	0.32	4.9	av $E\beta$ =394 27
	3700	0.65	4.7	av $E\beta$ =435 28

Continued on next page (footnotes at end of table)

145 Ba β^- decay 1978Pf02,1997Gr09 (continued)

 β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(1.32 \times 10^3 7)$	3600	0.86	4.7	av E β =478 28
$(1.42 \times 10^3 7)$	3500	1.08	4.8	av E β =520 28
$(1.52 \times 10^3 7)$	3400	1.18	4.8	av E β =563 29
$(1.62 \times 10^3 7)$	3300	1.61	4.8	av E β =607 29
$(1.72 \times 10^3 7)$	3200	2.15	4.8	av E β =651 29
$(1.82 \times 10^3 7)$	3100	2.58	4.8	av E β =695 29
$(1.92 \times 10^3 7)$	3000	3.01	4.8	av E β =740 29
$(2.02 \times 10^3 7)$	2900	3.98	4.8	av E β =784 30
$(2.12 \times 10^3 7)$	2800	5.38	4.7	av E β =829 30
$(2.22 \times 10^3 7)$	2700	5.38	4.8	av E β =874 30
$(2.32 \times 10^3 7)$	2600	6.24	4.8	av E β =920 30
$(2.36 \times 10^3 7)$	2566.4	0.8	5.8	av E β =935 30
$(2.42 \times 10^3 7)$	2500	8.07	4.8	av E β =965 30
$(2.52 \times 10^3 7)$	2400	2.15	5.4	av $E\beta = 1011 \ 30$
$(2.62 \times 10^3 7)$	2300	1.40	5.7	av $E\beta = 1057 \ 30$
$(2.72 \times 10^3 7)$	2200	1.40	5.8	av $E\beta = 1102 \ 30$
$(2.82 \times 10^3 7)$	2100	4.30	5.3	av E β =1148 30
$(2.92 \times 10^3 7)$	2000	7.53	5.2	av E β =1194 30
$(3.12 \times 10^3 7)$	1800	0.54	6.4	av E β =1287 30
$(3.22 \times 10^3 7)$	1700	1.61	6.0	av E β =1333 31
$(3.32 \times 10^3 7)$	1600	2.69	5.8	av E β =1380 <i>31</i>
$(3.42 \times 10^3 7)$	1500	1.35	6.2	av E β =1426 31
$(3.52 \times 10^3 7)$	1400	0.81	6.5	av E β =1472 <i>31</i>
$(3.62 \times 10^3 7)$	1300	0.38	6.9	av Eβ=1519 <i>31</i>
$(3.75 \times 10^3 7)$	1176.8?	1.83	6.2	av Eβ=1576 <i>31</i>
$(3.89 \times 10^3 7)$	1033.5?	0.17	7.3	av E β =1643 31
$(3.95 \times 10^3 7)$	973.6	0.22	7.3	av Eβ=1671 <i>31</i>
$(4.10 \times 10^3 7)$	827.0?	1.02	6.7	av E β =1740 <i>31</i>
4.23×10^{3}	734.0	0.54	7.0	av E β =1783 <i>31</i>
$(4.29 \times 10^3 7)$	637.5?	1.02	6.7	av E β =1828 <i>31</i>
$(4.32 \times 10^3 7)$	598.9	1.89	6.5	av Eβ=1846 <i>31</i>
$(4.38 \times 10^3 7)$	544.0	1.94	6.5	av Eβ=1872 <i>31</i>
$(4.41 \times 10^3 7)$	514.2	4.84	6.1	av E β =1886 <i>31</i>
$(4.43 \times 10^3 7)$	492.2	0.51	7.1	av E β =1896 <i>31</i>
$4.5 \times 10^3 2$	475.3	0.84	6.9	av E β =1904 31
$(4.57 \times 10^3 7)$	351.5	3.4	6.3	av E β =1962 <i>31</i>
$(4.69 \times 10^3 7)$	237.9	0.65	7.1	av E β =2015 <i>31</i>
$(4.73 \times 10^3 7)$	189.0	2.2	6.6	av E β =2038 31
4.86×10 ³ 17	96.6	4.4 3	6.33 5	av E β =2081 31
4.92×10^3 12	65.9	72	6.14 13	av E β =2096 <i>31</i>
				I β (g.s.+66)=7.0% 22, total absorption γ -ray spectrometer(1997Gr09, 1996Gr20).

[†] Absolute intensity per 100 decays.

$\gamma(^{145}{\rm La})$

I γ normalization: Deduced by evaluators using I β (g.s.+66)=7% 2, and I β =68% feeding "pseudo levels" between 1300 keV and 3900 keV (from total absorption γ -ray spectrometer measurements (1997Gr09, 1996Gr20). Authors have distributed this β^- intensity in (26) 100-keV bins. Evaluators have assumed about half this intensity to be carried out by γ rays deexciting these levels to the g.s. and 66-keV levels for deducing a γ -ray normalization factor of 0.17 2, which agrees very well with a measured value of I γ (96.6)=17.1% 21 (1987RoZW,1986Ro17).

 $^{145}_{57}$ La₈₈-3

	¹⁴⁵ Ba β ⁻ decay 1978Pf02,1997Gr09					09 (continued)		
$\gamma(^{145}La)$ (continued)							ntinued)	
E _γ ‡	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	<i>αb</i>	Comments
65.9 2	31	65.9	(7/2+)	0.0	(5/2+)	[M1]	3.59 6	$ \begin{array}{c} \alpha(\text{K}) = 3.07 \ 5; \ \alpha(\text{L}) = 0.418 \ 7; \ \alpha(\text{M}) = 0.0869 \ 15; \\ \alpha(\text{N}+) = 0.0224 \ 4 \\ \alpha(\text{N}) = 0.0191 \ 4; \ \alpha(\text{O}) = 0.00310 \ 6; \ \alpha(\text{P}) = 0.000239 \\ 4 \end{array} $
91.9 2	43	189.0	(*)	96.6	(*)	M1	1.377	$\alpha(N)=1.175 \ I8; \ \alpha(L)=0.1595 \ 25; \ \alpha(M)=0.0332 \ 5; \ \alpha(N)=0.00856 \ I4 \ \alpha(N)=0.00729 \ I2; \ \alpha(O)=0.001184 \ I9; \ \alpha(P)=9.16\times10^{-5} \ I4 \ Mult: \ K/I = 10 \ 3 \ \alpha(K) \exp[-1.3.4] \ (1986Po7U)$
96.6 2	100	96.6	(*)	0.0	(5/2+)	M1	1.193	$\alpha(K)=1.019 \ 16; \ \alpha(L)=0.1382 \ 21; \ \alpha(M)=0.0287 \ 5; \\ \alpha(N+)=0.00742 \ 12 \\ \alpha(N)=0.00631 \ 10; \ \alpha(O)=0.001026 \ 16; \\ \alpha(P)=7.95\times10^{-5} \ 12 \\ I_{\gamma}: \ I_{\gamma}=17.1\% \ 21 \ (1987 \text{RoZW}). \\ \text{Mult.: } K/L=8.3 \ 14 \ (1986 \text{RoZU}). $
123.2 2	7	189.0	(*)	65.9	(7/2+)	[M1]	0.598	$\alpha(K)=0.511 \ 8; \ \alpha(L)=0.0690 \ 11; \ \alpha(M)=0.01435$ 22; $\alpha(N+)=0.00371 \ 6$ $\alpha(N)=0.00315 \ 5; \ \alpha(O)=0.000513 \ 8;$ $\alpha(P)=3.98 \times 10^{-5} \ 6$
162.3 2	22	351.5	(*)	189.0	(*)	(M1)	0.277	$\begin{aligned} &\alpha(\mathbf{K}) = 0.237 \ 4; \ \alpha(\mathbf{L}) = 0.0318 \ 5; \ \alpha(\mathbf{M}) = 0.00661 \ 10; \\ &\alpha(\mathbf{N}+) = 0.001708 \ 25 \\ &\alpha(\mathbf{N}) = 0.001454 \ 21; \ \alpha(\mathbf{O}) = 0.000236 \ 4; \\ &\alpha(\mathbf{P}) = 1.84 \times 10^{-5} \ 3 \\ &\text{Mult.: } \mathbf{K}/\mathbf{L} = 5.3 \ 12, \ \alpha(\mathbf{K}) \exp = 0.18 \ 4 \ (1986\text{RoZU}). \end{aligned}$
162.3 [°] 2	<22	514.2		351.5	$(^{+})$			
171.6 [@] 2	7.6	237.9	$(9/2^+)$	65.9	$(7/2^+)$			
189.5 2	11	189.0	(*)	0.0	(5/2+)	[M1]	0.181	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1548 \ 23; \ \alpha(\mathbf{L}) = 0.0207 \ 3; \ \alpha(\mathbf{M}) = 0.00430 \\ &7; \ \alpha(\mathbf{N}+) = 0.001112 \ 16 \\ &\alpha(\mathbf{N}) = 0.000946 \ 14; \ \alpha(\mathbf{O}) = 0.0001540 \ 22; \\ &\alpha(\mathbf{P}) = 1.202 \times 10^{-5} \ 18 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.18 \ 4 \ (1986 \text{RoZU}). \end{aligned}$
237.9 [@] 2	6.8	237.9	$(9/2^+)$	0.0	$(5/2^+)$			
247.5 [#] 254.9 2 ^x 258 5 [@]	3 6 1.0	598.9 351.5	(*)	351.5 96.6	(*) (*)			E_{γ} , I_{γ} : observed only in 1978Pf02.
286.2 2	12	475.3		189.0	$(^{+})$			
286.2	<12	637.5?		351.5	(+)			
303.2 2	18	492.2		189.0	(*)			
313.6° 2	0.8	827.0?		514.2				
*316.3	3.4	514.2		180.0	(+)			
334.4 2 x343.7 [#]	2.2 6	827.0?		492.2				
351.8 2	10	351.5	$(^{+})$	0.0	$(5/2^+)$			
361.1 [@] 3	2.8	598.9		237.9	$(9/2^+)$			
$378.8\ 2$ $378.8^{\circ}\ 2$ $x_{400,0}^{\circ}$	24 <24 2	475.3 922.4?	(5/2+,7/2)	96.6) 544.0	(*)			
407.7 [#]	2 4	922 42	$(5/2^+ 7/2)$	514.2				
417.8 2 x427.2 [@]	25 3.7	514.2	(3/2 ,1/2	96.6	(*)			
477.8 2 481.5	8.2 0.7	544.0 973.6		65.9 492.2	$(7/2^+)$			

Continued on next page (footnotes at end of table)

			115 B8	a <i>b</i> dec	ay 197	8P102,19970	roy (contin	ue
					$\gamma(^{145}L)$	a) (continued	.)	
					/ <	, <u>,</u>		
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}			
492.7 [@] 2	12	492.2		0.0	$(5/2^+)$			
532.8 2	12	598.9		65.9	$(7/2^+)$			
544.2 2	29	544.0		0.0	$(5/2^+)$			
544.2 2	<29	734.0		189.0	(*)			
571.9°	<9	637.5?		65.9	$(7/2^+)$			
571.9 2	9	922.4?	$(5/2^+, 7/2)$	351.5	(*)			
3/8.03	0	11/0.8?		598.9	$(0, 0, 0, \pm)$			
590.8° 2	1.1	827.0?		237.9	$(9/2^{+})$			
390.02	12 5 2	390.9		0.0	(3/2)			
x 610.9 °	5.5							
x643.6°	2.3							
×655.3 °	5				(= (= +)			
668.2 ["]	2	734.0		65.9	$(1/2^{+})$			
683.8 ^{#C}	<7	922.4?	$(5/2^+, 7/2)$	237.9	$(9/2^+)$			
683.8"	7	1176.8?		492.2				
701.0#	3	1176.8?		475.3				
730.6#	8	827.0?		96.6	(*)			
734.1 2	4	734.0		0.0	$(5/2^{+})$			
^x 747.7 [@]	1.3	072 (100.0	(+)			
/84.5	0.6	973.6		189.0	(')			
^{*816.5}	1.1 1.0	1033 59		180.0	(+)			
$x_{840} = \frac{5}{2}$	1.0	1055.57		169.0	()			
×044.5	2.7							
$x_{1066,2}^{0}$	1.9							
1110.4#	3.3 7	1176 00		65.0	$(7/2^{+})$			
1110.4"	2.28	11/0.8/		65.9	$(1/2^{+})$			
1234~ x1255.2 [@]	1.0	1300		65.9	$(1/2^{+})$			
x1255.2 °	1.0							
1203.3°	0.5							
1208.7	0.4	1400		(5.0	(7/2+)			
1334	4.7^{∞}	1400		65.9	$(1/2^{+})$			
1434~ r1516.0@	7.9	1500		65.9	$(1/2^{+})$			
*1516.0 °	2.0	1600		(5.0	(7/0+)			
1534	15./~	1600		65.9	$(1/2^{+})$			
1634 ~~	9.4 ~	1700		65.9	$(1/2^{+})$			
×1692.5 °	2.1							
×1/14.1 ~	2.3	1000		65.0	(7.0+)			
1734 ^{cc}	3.2	1800		65.9	$(1/2^{+})$			
×1776.2°	1.1							
^x 1846.5	2.2							
1934 °	44.0 [°]	2000		65.9	$(7/2^+)$			
×1950.9 ^w	0.6	0566 A		500.0				
1968.6	1.0	2300.4 2566 4		598.9 544 0				
x2033 6 [@]	2.2 0.8	200.4		J++.U				
2033.0 2034 <mark>&</mark>	25 0 &	2100		65.0	$(7/2^{+})$			
2052.4	0.9	2566.4		514.2	(1/2)			

¹⁴⁵ Ra B- da 1078Pf02 1007Cr00 (e ontir ed)

			1	45 Ba β^- decay	1978Pf	1978Pf02,1997Gr09 (continued)					
				<u>2</u>	v(¹⁴⁵ La) (c	continued)					
E _γ ‡	$I_{\gamma}^{\ddagger a}$	E_i (level)	$E_f J_f^{\pi}$	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	J_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$			
x2065.5 [@]	0.6			2703 ^{&}	31.5 <mark>&</mark>	2800		96.6 (+)			
2134 <mark>&</mark>	8.2 <mark>&</mark>	2200	65.9 (7/2+	⁺) $x2708.7^{@}$	0.4						
^x 2185.1 [@]	1.8			2803 ^{&}	23.3 <mark>&</mark>	2900		96.6 (+)			
^x 2190.8 [@]	1.1			2903 ^{&}	17.6 <mark>&</mark>	3000		96.6 (+)			
2234 <mark>&</mark>	8.2 <mark>&</mark>	2300	65.9 (7/2+	⁺) 3003 ^{&}	15.1 <mark>&</mark>	3100		96.6 (+)			
2334 <mark>&</mark>	12.6 <mark>&</mark>	2400	65.9 (7/2+	⁺) 3103 ^{&}	12.6 <mark>&</mark>	3200		96.6 (+)			
2434 <mark>&</mark>	47.2 <mark>&</mark>	2500	65.9 (7/2+	⁺) 3203 ^{&}	9.4 <mark>&</mark>	3300		96.6 (+)			
^x 2456.3 [@]	2.5			3303 &	6.9 <mark>&</mark>	3400		96.6 (+)			
2501.0	0.7	2566.4	65.9 (7/2+	⁺) 3403 ^{&}	6.3 <mark>&</mark>	3500		96.6 (+)			
^x 2515.6 [@]	1.3			3503 ^{&}	4.9 <mark>&</mark>	3600		96.6 (+)			
2534 <mark>&</mark>	36.5 <mark>&</mark>	2600	65.9 (7/2+	+) 3603 &	3.8 <mark>&</mark>	3700		96.6 (+)			
$x_{2565.0}^{@}$	0.8			3703 ^{&}	1.9 <mark>&</mark>	3800		96.6 (+)			
2603 ^{&}	31.5 <mark>&</mark>	2700	96.6 (+)	3803 &	0.9 <mark>&</mark>	3900		96.6 (+)			

[†] $\alpha(K)$ exp were normalized to $\alpha(K)(M1)=1.035$ for 96.6 γ , ce(K) and ce(L) are from 1986RoZU.

[‡] From private communication of 1982ChZV, except where noted otherwise.

[#] Observed only in 1978Pf02.

[@] Observed only in 1982ChZV.

& Inferred by evaluators (from total γ -ray absorption spectrometer measurements) to balance the decay scheme.

^a For absolute intensity per 100 decays, multiply by 0.17 2.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*c*} Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

145 Ba β^- decay 1978Pf02,1997Gr09

¹⁴⁵₅₇La₈₈

6

145 Ba β^- decay 1978Pf02,1997Gr09

7