¹⁴⁵Ho ε decay **1989Vi02**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. Browne, J. K. Tuli	NDS 110, 507 (2009)	1-Oct-2008					

Parent: ¹⁴⁵Ho: E=0.0; J^{π} =(11/2⁻); T_{1/2}=2.4 s *I*; Q(ε)=9110 *SY*; % ε +% β^+ decay=100.0

¹⁴⁵Ho-Q(ε): From 2003Au03.

Measured: γ , $\gamma\gamma$, (K x ray) γ , γ^{\pm} .

 $I\varepsilon(tot)/I\beta^+=0.21 + 14-6$; $I\beta^+(from I\gamma\pm)/I(339.8\gamma)=5.7$ 15.

No delayed protons (no p-K x ray(Dy), no p- γ (¹⁴⁴Tb)) were observed.

Because of very incomplete decay scheme I ε , I β^+ , av E β are not given.

 $K\alpha_2 x ray/339.8g=0.68 5, K\alpha_1 x ray/339.8g=1.20 10.$

¹⁴⁵Dy Levels

E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}	E(level)
0.0 66.3 118.2	$\frac{1/2^+}{3/2^+}$ $11/2^-$	406.1 431.1 681.5	$5/2^+$ (9/2 ⁻) (15/2 ⁻)	740.2 818.7 1142.0	$(7/2^{-})$ $(13/2^{-})$ $(9/2^{-})$	1283.4 1640.3

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(7968 SY)	1142.0	≈10	≈1	≈5.2	≈11	av E β =3044; ε K=0.070; ε L=0.010; ε M+=0.003
(8291 SY)	818.7	≈4.8	≈0.4	≈5.6	≈5.2	av E β =3199; ε K=0.062; ε L=0.009; ε M+=0.003
(8678 SY)	431.1	≈7.7	≈0.5	≈5.5	≈8.3	av E β =3385 syst; ε K=0.053; ε L=0.008; ε M+=0.002
(8991 <i>SY</i>)	118.2	<38	<2	>4.9	<40	av E β =3536 syst; ε K=0.048; ε L=0.007; ε M+=0.002

[†] Absolute intensity per 100 decays.

$\gamma(^{145}\text{Dy})$

Iv normalization: From I(K x ray)/I(339 γ)= 1.88 11, and I(γ^{\pm})/I(339 γ)=5.65 15.

E_{γ}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α^{\dagger}	Comments
66.3 1	15 2	66.3	3/2+	0.0	1/2+	M1	7.83	α (K)=6.58 <i>10</i> ; α (L)=0.978 <i>15</i> ; α (M)=0.215 <i>4</i> ; α (N+)=0.0574 <i>9</i> α (N)=0.0497 <i>8</i> ; α (O)=0.00726 <i>11</i> ; α (P)=0.000413 <i>6</i> Mult.: α (K)exp=6.5 <i>10</i> from (K x ray) $\gamma/\gamma\gamma$.
^x 249.2 2	≈5							
309.1 <i>1</i>	25 2	740.2	$(7/2^{-})$	431.1	$(9/2^{-})$			
312.9 <i>1</i>	95 <i>5</i>	431.1	$(9/2^{-})$	118.2	$11/2^{-}$			
x315.1 2	12 2							
^x 316.6 2	82							
334.1 <i>1</i>	90 2	740.2	$(7/2^{-})$	406.1	$5/2^{+}$			
339.8 <i>1</i>	100	406.1	$5/2^{+}$	66.3	$3/2^{+}$			
387.6 2	15 5	818.7	$(13/2^{-})$	431.1	$(9/2^{-})$			
401.8 1	85 5	1142.0	$(9/2^{-})$	740.2	$(7/2^{-})$			
498.3 2	12 3	1640.3		1142.0	$(9/2^{-})$			
543.2 2	20 5	1283.4		740.2	$(7/2^{-})$			
563.3 2	15 5	681.5	$(15/2^{-})$	118.2	$11/2^{-}$			
622.1 2	15 5	740.2	$(7/2^{-})$	118.2	11/2-			

$^{145}{\rm Ho}\,\varepsilon$ decay 1989Vi02 (continued)

 $\gamma(^{145}\text{Dy})$ (continued)

Eγ	Ιγ [‡]	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}
700.5 3	20 5	818.7	$(13/2^{-})$	118.2	11/2-
852.0 5	52	1283.4		431.1	$(9/2^{-})$

[†] Additional information 1. [‡] For absolute intensity per 100 decays, multiply by 0.15. ^x γ ray not placed in level scheme.

¹⁴⁵Ho ε decay 1989Vi02

Decay Scheme

¹⁴⁵₆₆Dy₇₉

3