208 Pb(18 O,X γ) 2005Ve09

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. Browne, J. K. Tuli	NDS 110, 507 (2009)	1-Oct-2008				

Also $^{238}U(^{12}C,X\gamma)$ reaction.

Additional information 1.

 $E(^{18}O)=85$ MeV, $E(^{12}C)=90$ MeV Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ using Euroball III and IV arrays of 15 seven-element 'Clusters', 26 four-element 'Clovers' and 30 tapered single-crystal Ge detectors, all detectors are Compton-suppressed.

¹⁴⁵Ce Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0 [#]	(5/2 ⁻)	1112.8 [#] 6	(17/2 ⁻)	2015.3 [@] 7	$(23/2^+)$	3320.5 8	
70.0 <i>3</i>	$(7/2^{-})$	1126.2 [@] 6	$(15/2^+)$	2688.4 [@] 7	$(27/2^+)$	3475.8 [@] 8	$(31/2^+)$
167.5 [#] 5	(9/2-)	1495.0 [@] 6	$(19/2^+)$	2810.7 7		3921.5 <mark>&</mark> 8	$(33/2^+)$
548.2 [#] 6	$(13/2^{-})$	1840.8 [#] 7	$(21/2^{-})$	3267.9 ^{&} 8	$(29/2^+)$	4590.5 <mark>&</mark> 9	$(37/2^+)$

[†] Deduced by evaluators from least-squares fit to γ -ray energies assuming an uncertainty of 0.30 keV for all γ rays.

^{\ddagger} J^{π} assignments are based on the assumption that in yrast decays spin values increase with excitation energy. Also, they are based on the analogy to the level structure of neighboring isotones.

[#] Band(A): Band based on $5/2^-$. Configuration= $vf_{7/2}^{-3}$ for $5/2^-$ and $7/2^-$ states. Above $9/2^-$, configuration= $vh_{9/2}$ coupled to quadrupole modes.

^(a) Band (B): Band based on $(15/2^+)$. Configuration= $\nu h_{9/2}$ coupled to octupole modes as suggested by interband E1 transitions.

& Band(C): Band based on $(29/2^+)$. Possible configuration= $vf_{7/2}vh_{9/2}vi_{13/2}$.

$\gamma(^{145}\text{Ce})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Eγ	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
70.0	70.0	$(7/2^{-})$	0 ($(5/2^{-})$	564.6	1112.8	$(17/2^{-})$	548.2	$(13/2^{-})$
97.5	167.5	$(9/2^{-})$	70.0 ($(7/2^{-})$	578.0	1126.2	$(15/2^+)$	548.2	$(13/2^{-})$
174.4	2015.3	$(23/2^+)$	1840.8 ($(21/2^{-})$	579.5	3267.9	$(29/2^+)$	2688.4	$(27/2^+)$
368.8	1495.0	$(19/2^+)$	1126.2 ($(15/2^+)$	653.6	3921.5	$(33/2^+)$	3267.9	$(29/2^+)$
380.7	548.2	$(13/2^{-})$	167.5 ($(9/2^{-})$	669.0	4590.5	$(37/2^+)$	3921.5	$(33/2^+)$
382.2	1495.0	$(19/2^+)$	1112.8 ($(17/2^{-})$	673.1	2688.4	$(27/2^+)$	2015.3	$(23/2^+)$
445.7	3921.5	$(33/2^+)$	3475.8 ($(31/2^+)$	727.9	1840.8	$(21/2^{-})$	1112.8	$(17/2^{-})$
509.8	3320.5		2810.7		787.4	3475.8	$(31/2^+)$	2688.4	$(27/2^+)$
520.4	2015.3	$(23/2^+)$	1495.0 ($(19/2^+)$	795.4	2810.7		2015.3	$(23/2^+)$

²⁰⁸Pb(¹⁸O,Xγ) 2005Ve09

Level Scheme

¹⁴⁵₅₈Ce₈₇

¹⁴⁵₅₈Ce₈₇