²⁴⁸Cm SF decay 1996Jo14

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 110, 507 (2009)	1-Oct-2008

Parent: ²⁴⁸Cm: E=0; $J^{\pi}=0^+$; $T_{1/2}=3.48\times10^5$ y 6; %SF decay=?

Additional information 1.

Measured triple γ -ray coincidence with EUROGAM2, an array of 52 Compton-shielded Ge detectors and 4 LEPS detectors. γ rays were assigned to ¹⁴⁵Ba by x-ray coincidence and coincidence with γ rays from Zr isotopes (complementary fission fragments) (1996Jo14).

¹⁴⁵Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0#	5/2-	507.51 19	$(11/2)^{-}$	899.93 [#] 22	$(15/2)^{-}$	1639.8 [#] 3	$(21/2)^{-}$
112.49 [#] 16	$(7/2)^{-}$	617.13 [@] 22	$(13/2)^+$	1097.84 ^{#} 23	$(17/2)^{-}$	1718.6 [@] 4	$(25/2)^+$
276.91 [#] 16	$(9/2)^{-}$	641.05 [#] 20	$(13/2)^{-}$	1240.3 [@] 4	$(21/2)^+$	2282.8 [@] 5	$(29/2)^+$
462.42 [#] 19	$(11/2)^{-}$	865.97 [@] 25	$(17/2)^+$	1393.50 [#] 24	$(19/2^{-})$	2922.7 [@] 5	$(33/2)^+$

 † Deduced by evaluator from least-squares fit to $\gamma\text{-ray energies.}$

[‡] From Adopted Levels.

[#] Band(A): g.s. rotational band.

[@] Band(B): rotational band.

$\gamma(^{145}\text{Ba})$

Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	Comments
109.5 2	19	617.13	(13/2)+	507.51	(11/2)-	E1		$\alpha(\exp)=0.17\ 2;\ \alpha(K)\exp=0.22\ 11$ DCO=0.79\ 12. from $\gamma\gamma\gamma(\theta)$.
112.5 2		112.49	$(7/2)^{-}$	0	$5/2^{-}$	M1+E2	+0.13 +7-6	$\alpha(K) \exp = 0.66\ 29$
154.6 2	87	617.13	$(13/2)^+$	462.42	(11/2)-	E1		α (K)exp=0.08 2; α (exp)=0.08 1 DCO=1.08 7, from $\gamma\gamma\gamma(\theta)$.
164.5 2	90	276.91	(9/2)-	112.49	(7/2)-	M1+E2	-0.31 +24-27	α (K)exp=0.23 8 DCO=0.72 2, from $\gamma\gamma(\theta)$.
178.6 2	7	641.05	$(13/2)^{-}$	462.42	$(11/2)^{-}$	M1+E2		
185.4 2	77	462.42	(11/2)-	276.91	(9/2)-	M1+E2	+0.18 +10-7	α (K)exp=0.19 5 DCO=1.10 5, from $\gamma\gamma(\theta)$.
198.1 2	4	1097.84	$(17/2)^{-}$	899.93	$(15/2)^{-}$			
230.6 2	6.3	507.51	$(11/2)^{-}$	276.91	$(9/2)^{-}$			
246.2 2	2	1639.8	$(21/2)^{-}$	1393.50	$(19/2^{-})$			
248.6 2	100	865.97	$(17/2)^+$	617.13	$(13/2)^+$	E2		DCO=0.88 3, from $\gamma\gamma\gamma(\theta)$.
259.0 2	6	899.93	$(15/2)^{-}$	641.05	$(13/2)^{-}$	M1+E2	+0.18 +23-21	DCO=1.33 5, from $\gamma\gamma\gamma(\theta)$.
276.9 2	22	276.91	$(9/2)^{-}$	0	$5/2^{-}$	E2		
295.8 2	3	1393.50	$(19/2^{-})$	1097.84	$(17/2)^{-}$	M1+E2		DCO=0.83 4, from $\gamma\gamma(\theta)$.
350.0 2	61	462.42	$(11/2)^{-}$	112.49	$(7/2)^{-}$	E2		DCO=1.12 <i>l</i> , from $\gamma\gamma(\theta)$.
364.3 2	12	641.05	$(13/2)^{-}$	276.91	$(9/2)^{-}$	E2		DCO=1.27 6, from $\gamma\gamma\gamma(\theta)$.
374.3 2	66	1240.3	$(21/2)^+$	865.97	$(17/2)^+$	E2		DCO=0.99 4, from $\gamma\gamma\gamma(\theta)$.
394.9 2	21	507.51	$(11/2)^{-}$	112.49	$(7/2)^{-}$	E2		DCO=1.06 5, from $\gamma\gamma(\theta)$.
437.6 2	12	899.93	$(15/2)^{-}$	462.42	$(11/2)^{-}$	E2		DCO=0.97 15, from $\gamma\gamma\gamma(\theta)$.
456.8 2	10	1097.84	$(17/2)^{-}$	641.05	$(13/2)^{-}$	E2		DCO=0.97 9, from $\gamma\gamma\gamma(\theta)$.
478.3 2	42	1718.6	$(25/2)^+$	1240.3	$(21/2)^+$	E2		DCO=1.03 3, from $\gamma\gamma\gamma(\theta)$.
493.6 2	3	1393.50	$(19/2^{-})$	899.93	$(15/2)^{-}$			
527.3 2	2.1	1393.50	$(19/2^{-})$	865.97	$(17/2)^+$			
542.0 2	8	1639.8	$(21/2)^{-}$	1097.84	$(17/2)^{-}$	E2		DCO=1.03 9, from $\gamma\gamma\gamma(\theta)$.

Continued on next page (footnotes at end of table)

					²⁴⁸ Cm	SF decay	1996Jo14 (continued)
						γ (¹⁴⁵ B	a) (continued)
E_{γ}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	Comments
564.2 2 639.9 2	34 6	2282.8 2922.7	$(29/2)^+$ $(33/2)^+$	1718.6 2282.8	$(25/2)^+$ $(29/2)^+$	E2 E2	DCO=0.98 6, from $\gamma\gamma\gamma(\theta)$. DCO=0.91 6, from $\gamma\gamma(\theta)$.

[†] From angular correlation, internal conversion, and γ -ray polarization measurements (1996Jo14). Quadrupole rays were assigned E2 by rotational band character, and dipoles, E1 or M1 by polarization measurements and level scheme considerations.

^{\ddagger} From DCO and γ -ray polarization results.

[#] Uncertainty varies from 10% for strong transitions to 30% for weak ones.

¹⁴⁵₅₆Ba₈₉

