History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	A. A. Sonzogni	NDS 93,599 (2001)	1-Dec-2000				

 $Q(\beta^{-}) = -5.80 \times 10^{3} \ 3$; $S(n) = 1.002 \times 10^{4} \ 6$; $S(p) = 1.43 \times 10^{3} \ 21$; $Q(\alpha) = 2.19 \times 10^{3} \ 6 \ 2012$ Wa38 Note: Current evaluation has used the following Q record -6092 syst 10139 syst 1894 syst 1717 syst 1995Au04. $\Delta Q(\beta^{-})=499$ keV. $\Delta S(n)=499$ keV.

 $\Delta S(p)=359$ keV.

 $\Delta Q(\alpha)$ =303 keV.

¹⁴⁴Tb Levels

Cross Reference (XREF) Flags

A

 $^{144}\text{Dy}\ \varepsilon$ decay ^{144}Tb IT decay (4.25 s) В

С $(HI,xn\gamma)$

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0	1+	≈1 s	AB	$\%\varepsilon + \%\beta^+ = 100$
				$T_{1/2}$: from 1986Re11. Other: 1.5 s 10 (1982No08).
106 5 3	(1^{+})		•	J ⁿ : from log ft from 0 ⁺ parent, ≈ 4.6 .
283.0.3	(1) (3^+)		R	J. Holli log <i>ft</i> fibilition patent. I^{π} : level fed by an F3 transition from a (6 ⁻) level: γ to 1 ⁺ as
298.6 3	(1^+)		A	J^{π} : from log <i>ft</i> from 0 ⁺ parent.
396.9 5	(6 ⁻)	4.25 s 15	BC	%IT=66 (1986Re11); $\%\varepsilon + \%\beta^+ = 34$ (1986Re11)
				$T_{1/2}$: from 1986Re11. Others: 4.5 s 5 (1982No08), 5 s 1 (1982So02).
	(a .b.)			J^{π} : from log <i>ft</i> to daughter's (5 ⁻) and (7 ⁻) levels.
475.5 3	(1^{+})	29.452	A	J ⁿ : from log ft from 0 ⁺ parent. I^{π} , 70 keV exter (6 ⁻) is E2
470.2 3	(8)	2.8 µs 5	C	J^{*} . 79 KeV γ 10 (0) 18 E2.
517.1.5	(9^{+})	0.67 <i>u</i> s 6	С	J^{π} : 41 keV γ to (8 ⁻) is E1.
	(-)	p		$T_{1/2}$: from 1996Sf01.
544.5 6	(10^{+})	<300 ns	С	J^{π} : 27 keV γ to (9 ⁺) is M1.
				$T_{1/2}$: from 1996Sf01.
978.2 [#] 6	(11^{+})		С	
1127.2 5			C	
1209.0 [#] 6	(12^{+})		С	
1787.3 [#] 6	(13^{+})		С	
2154.7 6			C	
2183.16	(1.4.1.)		C	
$2260.7^{m} 6$	(14^{+})		C	
2514.50	(13)		C	
2586.2 6	(13)		C	
2741.9 6	(14)		С	
2780.2 6	(15^{+})		C	
2918.0 ^{6} 6	(15)		C	
2983.4 6	(16 ⁺)		С	
3129.9 [•] 7	(16)		C	
3276.3 ^w 7	(17)		С	
3433.1 [#] 6	(17^{+})		С	
3705.4 [@] 7	(18)		С	

Adopted Levels, Gammas (continued)

¹⁴⁴Tb Levels (continued)

E(level) [‡]	$J^{\pi \dagger}$	XREF
3712.7 [#] 7	(18^{+})	С
4058.3 [@] 7	(19)	С
4631.5 [@] 8	(20)	С
4664.6 [#] 7		С
5164.2 [@] 8		С
5379.9 [#] 8		С

[†] High-spin data follows 1996Sf01 assignments based on R(DCO), ce values and systematics of N=79 isotones. [‡] From least squares fit.

[#] Band(A): $\Delta J=1$ band, based on 11⁺. [@] Band(B): $\Delta J=1$ band, based on 13.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [†]	α^{\ddagger}	Comments
196.5	(1^+)	196.5 3	100	$0.0 1^+$		0.0744	E_{γ} : from ε decay.
283.9	(3^{+})	283.9 3	100	$0.0 1^+$	[E2]	0.0744	E_{γ} : from ε decay.
298.0	(1^{+}) (6^{-})	298.0 3	100	$0.0 1^{+}$	E3	22.7	E_{γ} : from ε decay. $\alpha(K) = 3.04.10; \ \alpha(L) = 14.0.5; \ \alpha(M) = 3.70.11;$
590.9	(0)	115.0 5	100	203.9 (3)	Ц.)	22.1	$\alpha(N+)=1.03.3$
							$B(E3)(W.u.)=0.0275\ 22$
							E_{ν} , Mult.: from it decay.
							Additional information 1.
475.5	(1^{+})	475.5 <i>3</i>	100	$0.0 \ 1^+$			
476.2	(8 ⁻)	79.3 2	100	396.9 (6 ⁻)	E2	6.35	B(E2)(W.u.)=0.196 22
							α (K)=2.00 6; α (L)=3.34 <i>10</i> ; α (M)=0.792 24; α (N+)=0.215 7
517.1	(9+)	40.8 2	100	476.2 (8-)	E1	0.58	$B(E1)(W.u.)=3.4\times10^{-6} 4$
544.5	(10^{+})	26.8 6	100	517.1 (9 ⁺)	M1	16.0	B(M1)(W.u.)>0.00021
978.2	(11^{+})	433.6 2	100	544.5 (10 ⁺)			
1127.2		651.1 2	100	476.2 (8 ⁻)			
1209.0	(12^{+})	230.7 2	55 <i>5</i>	978.2 (11 ⁺)			
		664.5 2	100 7	544.5 (10 ⁺)			
1787.3	(13^{+})	578.3 2	100 5	$1209.0 (12^+)$			
01547		809.2 3	12.4 13	9/8.2 (11+)			
2154.7		1027.63	100	1127.2			
2183.1		1055.9 3	100 40	112/.2			
2260 7	(14^{\pm})	1204.73	39 30 100	$9/8.2 (11^{+})$			
2200.7	(14)	331 4 2	100	1209.0(12)			
2314.3	(13)	350.0.3	21 11	2165.1			
		1305 5 2	100 22	$1209.0 (12^+)$			
2586.2	(13)	1377.0.3	100 22	$1209.0 (12^+)$			
2741.9	(13) (14)	155.7.2	19.4	2586.2 (13)			
27.117	(1.)	227.5 2	76 17	2514.5 (13)			
		954.6 2	100 14	1787.3 (13 ⁺)			
2780.2	(15^{+})	519.4 2	89 20	2260.7 (14+)			
		992.9 2	100 16	1787.3 (13+)			
2918.0	(15)	176.1 2	100	2741.9 (14)			
2983.4	(16^{+})	203.2 2	100 8	2780.2 (15 ⁺)			
		722.7 2	25 6	2260.7 (14+)			

 $\gamma(^{144}\text{Tb})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{144}\text{Tb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$
3129.9	(16)	211.9 2	100	2918.0	(15)	4058.3	(19)	352.9 2	100 17	3705.4 (18)
3276.3	(17)	146.4 2	100	3129.9	(16)			782.0 2	16 5	3276.3 (17)
3433.1	(17^{+})	449.7 2	100 15	2983.4	(16^{+})	4631.5	(20)	573.2 2	100	4058.3 (19)
		652.7 2	40 13	2780.2	(15^{+})	4664.6		951.9 <i>3</i>	100	3712.7 (18 ⁺)
3705.4	(18)	429.1 2	100	3276.3	(17)	5164.2		532.7 <i>3</i>	100	4631.5 (20)
3712.7	(18^{+})	279.5 2	90 24	3433.1	(17^{+})	5379.9		715.3 3	100	4664.6
		729.4 2	100 17	2983.4	(16 ⁺)					

[†] From (HI,xn γ) except as noted.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁴⁴₆₅Tb₇₉

4

Band(A): $\Delta J{=}1$ band, based on 11^+

¹⁴⁴₆₅Tb₇₉