130 Te(19 F,5n γ) 1993Gl03

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	A. A. Sonzogni	NDS 93, 599 (2001)	1-Dec-2000					

E=85 MeV, measured E γ , $\gamma(\theta)$, prompt/delayed $\gamma\gamma$, DCO (0°, 90°), ce, using a total of 6 Ge detectors (4 of them Compton suppressed) and a miniorange detector. Earlier publication 1993Gl02.

¹⁴⁴Pm Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	5-		
171.90 [#] .9	5 6 ⁻		
171.90^{\pm} 9	6-		
514 50 10	7-		
841.09 [@] 11	, 9 ⁺	0.78 µs 20	T _{1/2} : from 1993Mu03.
896.50 16			
1274.00 ^{⁽⁰⁾} 12	10+		
1455.40 11	8		
1705.00 12	10^{+}		
1711.30 [#] 11	9-		
1850.90 12	(9)		
1985.30 [#] 12	10-		
2072.41 [#] 13	11-		
2269.72 [#] 14	12-		
2312.30 [@] 12	11^{+}		
2610.20 13			
2647.30 13	12		
2668.29 [@] 14	12+		
2774.59 [@] 13	13+		
3060.03 [@] 15	14^{+}		
3127.78 14	13		
3348.74 15	14		
3431.24 ^{&} 15	$14^{(-)}$		
3510.94 [@] 15	15+		
3616.04 15	(14)		
3/95.17 15	15		
3899.54° 15	15(-)		
3904.55 15	1 (-)		
4118.75 16	16		
4227.54 17	10		
4505.25 [∞] 19	1 /		
4557.35 17	1′/ ⁺ 19		
4010.93 19	18		
5118.85 [~] 21	10		
5850.65 21	20		

[†] From least-square fit to $E\gamma'$ s. [‡] Author's values deduced from $\gamma(\theta)$ and ce values. [#] Proposed configuration= $((\nu f_{7/2})) + \operatorname{core}(^{143}\text{Pm})$. [@] Proposed configuration= $((\pi h_{11/2})(\nu f_{7/2})) + \operatorname{core}(^{142}\text{Nd})$. [&] Proposed configuration= $((\pi h_{11/2})^2(\pi d_{5/2})^{-1}(\nu f_{7/2})) + \operatorname{core}(^{142}\text{Nd})$.

¹³⁰Te(¹⁹F,5nγ) **1993Gl03** (continued)

$\gamma(^{144}\text{Pm})$

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	Comments
(55.4)		896.50		841.09 9+			E_{γ} : from level-energy difference. γ not observed since below the energy detection threshold
(58.1)		2668.29	12+	2610.20			E_{γ} : from level-energy difference. γ not observed since below the energy detection threshold.
87.1 <i>1</i>	8.8† 8	2072.41	11-	1985.30 10-	M1		Mult.: from intensity balance.
106.3 <i>1</i>	11.9^{\dagger} 7	2774.59	13+	2668.29 12+			2
109.4 <i>1</i>	$3.8^{\dagger} 2$	3904.55		3795.17 15			
127.3 1	$1.3^{\dagger} 4$	2774.59	13+	2647.30 12			
134.4 1	2.2^{\dagger} 3	1985.30	10-	1850.90 (9)			
171.9 <i>I</i>	100 6	171.90	6-	0.0 5			$A2=-0.25 8; A_4=0.13 9.$
197.3 <i>1</i>	18.7 [†] <i>17</i>	2269.72	12-	2072.41 11-	M1(+E2)	-0.01 8	Ratio(DCO)= 0.47 <i>12</i> . Mult.: from intensity balance.
219.2 <i>1</i>	8.7 5	4118.75	$16^{(-)}$	3899.54 15 ⁽⁻⁾	M1		$A_2 = -0.30$ 7; $A_4 = 0.11$ 7. $\alpha(K) \exp = 0.155$ 26.
221.0 <i>I</i>	5.6 4	3348.74	14	3127.78 13			$A_2 = -0.04 \ 8; \ A_4 = 0.15 \ 9.$
232.4 1	80 4	232.40	6-	$0.0 5^{-145540}$	DIO	.0.11.7	$A_2 = -0.164; A_4 = 0.044.$
255.9 I 261.6 I	3.8 3 4 1 3	1/11.30	9 18	14557.40 8 4557.35 17 ⁺	D+Q	+0.11 /	$A_2 = -0.09 \ 11; \ A_4 = 0.04 \ 12.$
274.01	16.6.8	1985.30	10^{-10}	$1711.30 9^{-1}$	$M_{1}(+E_{2})$	+0.004 23	$A_2 = -0.32$ 9, $A_4 = -0.05$ 10. $A_2 = -0.27$ 3: $A_4 = 0.05$ 3.
282.1 <i>I</i>	74 3	514.50	7-	232.40 6-		10100120	$A_2 = -0.13 \ 3; \ A_4 = 0.02 \ 4.$
283.5 1	>2.1	3899.54	$15^{(-)}$	3616.04 (14)	D(+Q)	-0.03 14	Ratio(DCO)= 0.37 16.
285.4 1	57 3	3060.03	14^{+}	2774.59 13+	M1+E2	+0.052 18	$A_2 = -0.17 \ 3$; $A_4 = 0.02 \ 3$. $\alpha(K) \exp = 0.072 \ 10$.
288.5 1	>0.9	3904.55		3616.04 (14)	(D+Q)	-0.07 9	Ratio(DCO)= 0.84 20.
323.6 1	2.5 [†] 3	4118.75	$16^{(-)}$	3795.17 15			
326.6 1	75 3	841.09	9 ⁺	514.50 7-			$A_2 = -0.093\ 24; A_4 = 0.00\ 3.$
329.8 1	5.4 3	4557.35	17	4227.54 16	D(+Q)	+0.024	$A_2 = -0.25$ 5; $A_4 = 0.03$ 5.
555.01	4.1 3	2047.30	12	2312.30 11	D(+Q)	-0.05 8	$A_2 = -0.22 \ 10; \ A_4 = 0.11 \ 12.$
342.6 1	41.0 25	514.50	7	171.90 6			
353.2 1	1.6 3	3127.78	13	2774.59 13 ⁺	$M1(\pm E2)$	0.014.17	A = 0.218.22; A = 0.004.25
356.0 1	54.6 24	2008.29	12	2312.30 11	M1(+E2)	+0.014 1/	$A_2 = -0.218 23$; $A_4 = -0.004 23$. α (K)exp=0.042 5.
363.9 1	$2.2^{1}3$	3795.17	15	$3431.24 14^{(-)}$	D+Q	+0.04 7	Ratio(DCO)= $0.55 \ I3$.
307.4 1	10.9δ	2072.41	11	1705.00 10	EI(+M2)	-0.039 22	$A_2 = -0.32$ 3; $A_4 = 0.02$ 3. α (K)exp<0.014 0.
3/1.5 1	25.9 12	12/4.00	10.	896.50		0 020 24	Ratio(DCO)= $0.47 \ 3.$
393.6 <i>1</i>	2.8 2	4303.23 3904.55	17	3510.94 15 ⁺	(D+Q)	$+0.030\ 24$ $-0.18\ 8$	$A_2 = -0.223 \ I_2; \ A_4 = 0.030 \ I_3.$ $A_2 = -0.58 \ 9; \ A_4 = 0.02 \ I_0.$
431.0 <i>1</i> 432.9 <i>1</i>	30.3 [†] <i>17</i> 49.7 22	1705.00 1274.00	10 ⁺ 10 ⁺	$\begin{array}{ccc} 1274.00 & 10^{+} \\ 841.09 & 9^{+} \end{array}$	M1+E2	+0.249 8	Ratio(DCO)= 0.41 9. A ₂ =0.289 12; A ₄ =-0.061 15. α (K)exp>0.025
446.5 1	13.7 7	3795.17	15	3348.74 14			$A_2 = -0.24 \ 3; \ A_4 = -0.05 \ 4.$
450.9 <i>1</i>	17.5 8	3510.94	15+	3060.03 14+	M1		$A_2 = -0.068$ 22; $A_4 = 0.097$ 25. α (K)exp=0.026 3.
459.5 <i>1</i>	4.3 2	3127.78	13	2668.29 12+			$A_2 = -0.10 9$; $A_4 = 0.038 11$.
462.3 1	4.0 2	2774.59	13^+	2312.30 11+	E2(+M3)	-0.09 4	$A_2=0.18 \ 3; \ A_4=-0.09 \ 4. \ \alpha(K)\exp<0.029 \ 8.$
468.3 1	9.1 4	3899.54	15(-)	3431.24 14(-)	M1+E2	+0.09 3	Ratio(DCO)= 0.53 7. A ₂ = -0.09 4; A ₄ = 0.00 4. α (K)exp= 0.018 6.
499.0 1	3.2.2	5850.65	20_{12^+}	5351.65 19	D(+Q)	+0.023	$A_2 = -0.26\ 7;\ A_4 = 0.03\ 8.$
504.9 I 532 7 I	4.1 Z 3 7 2	2774.39 5351.65	13' 19	2209.72 12 4818.95 18	E1(+M2) D+O	+0.02.5 +0.08.4	$A_2 = -0.1/4; A_4 = -0.055.$ $A_2 = -0.145; A_4 = -0.016$
574.2 1	6.0 4	3348.74	14	2774.59 13+	D+Q	+0.05 3	$A_2 = -0.165; A_4 = 0.017.$

Continued on next page (footnotes at end of table)

130 Te(19 F,5n γ) 1993Gl03 (continued)

γ ⁽¹⁴⁴Pm) (continued)</sup>

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	Comments
607.8 <i>1</i> 613.6 <i>1</i>	9.6 [†] 6 3.2 2	4118.75 5118.85	16 ⁽⁻⁾	3510.94 15 ⁺ 4505.25 17			$A_2 = 0.07 \ 8; \ A_4 = -0.10 \ 10.$
624.9 <i>1</i>	4.3 5	2610.20		1985.30 10-			2
669.2 1	34 [†] 3	841.09	9+	171.90 6-			
735.1 <i>1</i>	16.0 [†] <i>10</i>	3795.17	15	3060.03 14+			
794.3 <i>1</i>	8.1 7	5351.65	19	4557.35 17+			
839.5 1	2.4 [†] 7	3899.54	$15^{(-)}$	3060.03 14+			
863.9 <i>1</i>	11.5 5	1705.00	10^{+}	841.09 9+	M1+E2	+0.252 10	$A_2=0.20 3$; $A_4=-0.04 4$. α (K)exp=0.0058 15.
942.3 1	5.7 3	2647.30	12	1705.00 10+	Q+O	-0.07 5	$A_2 = 0.25 \ 3; \ A_4 = -0.12 \ 3.$
1038.3 1	48.7 22	2312.30	11'	12/4.00 10	M1+E2	+0.233	$A_2=0.22$ 3; $A_4=-0.10$ 3. $\alpha(K)\exp=0.0026$ 4.
1046.4 <i>1</i>	7.2 3	4557.35	17^{+}	3510.94 15+	E2(+M3) [#]	-0.070 25	$A_2 = 0.26 4; A_4 = -0.20 5.$
1161.5 <i>1</i>	13.2 6	3431.24	$14^{(-)}$	2269.72 12-	Q(+O)	$-0.084\ 22$	$A_2 = 0.28 \ 3; \ A_4 = -0.21 \ 4.$
1167.5 <i>1</i>	6.9 <i>3</i>	4227.54	16	3060.03 14+	$E2(+M3)^{\#}$	-0.09 4	$A_2 = 0.265; A_4 = -0.226.$
1196.8 <i>1</i>	16.6 7	1711.30	9-	514.50 7-	E2(+M3)	-0.11 3	$A_2 = 0.200 \ 14; A_4 = -0.139 \ 18.$
1223.0 <i>1</i>	2.1 [†] 3	1455.40	8	232.40 6-			$A_2 = 0.19 \ 16; A_4 = -0.23 \ 20.$
1336.2 <i>1</i>	4.9 [†] 8	2610.20		1274.00 10+			
1336.4 <i>1</i>	6.2 [†] 4	1850.90	(9)	514.50 7-			
1346.3 <i>1</i>	5.3 [†] 4	3616.04	(14)	2269.72 12-			
1471.2 <i>1</i>	23.1 10	2312.30	11+	841.09 9+	E2(+M3)	-0.089 19	$A_2 = 0.269 \ 23; A_4 = -0.20 \ 3.$

[†] From $\gamma\gamma$ coin data. [‡] From $\gamma(\theta)$ and ce. [#] Author's values deduced from transition rates estimates.

 $^{144}_{61} Pm_{83}$

 $\boldsymbol{\nabla}$

 $^{144}_{61} Pm_{83}\text{--}5$

 $^{144}_{61}$ Pm $_{83}$ -5

From ENSDF