$^{148}\mathbf{Sm} \; \alpha \; \mathbf{decay}$

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. A. Sonzogni	NDS 93, 599 (2001)	1-Dec-2000

Parent: ¹⁴⁸Sm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=7\times10^{15}$ y 2; $Q(\alpha)=1986.0$ 12; % α decay=100.0

 $T_{1/2}(^{148}\text{Sm}) = 8 \times 10^{15} \text{ y } 2 \text{ was measured by 1968Ko06, } 7 \times 10^{15} \text{ y } 3 \text{ by 1970Gu14}. \text{ The } r_0 \text{ parameter is calculated as 1.575 } 15 \text{ for } T_{1/2} = 8 \times 10^{15} \text{ y and } 1.58 \text{ 3 for } T_{1/2} = 7 \times 10^{15} \text{ y } 3. \text{ A similar trend to the } r_0 \text{ values of Er isotopes suggests } r_0(^{144}\text{Nd}) = 1.55 \text{ 3.} T_{1/2}(^{148}\text{Sm}) = 12 \times 10^{15} \text{ y } 5 \text{ is obtained for } r_0 = 1.55 \text{ 3 from calculations of } r_0'\text{ s as a function of half-lives. Although within their } T_{1/2}(^{148}\text{Sm}) = 12 \times 10^{15} \text{ y } 5 \text{ is obtained for } r_0 = 1.55 \text{ 3 from calculations of } r_0'\text{ s as a function of half-lives.}$

uncertainties they agree with each other, the r_0 value calculated by using the measured $T_{1/2}$ of 1968Ko06 fits the local trend better.

 $\%\alpha$ =100. The nucleus ¹⁴⁸Sm is β stable.

¹⁴⁴Nd Levels

E(level)	\mathbf{J}^{π}
0.0	0^{+}

 α radiations

Eα	E(level)	$I\alpha^{\dagger \#}$	HF [‡]	Comments
1932.3 12	0.0	100	1.0	Eα: calculated from Q(α)(¹⁴⁸ Sm)=1986.0 <i>12</i> . Eα=1.96 MeV 2 (1970Gu14). Other measurement: Eα=1.90 MeV 5 (1968Ko06). Iα: only one α group was observed. An upper limit of 1.2×10^{-15} per 100 α decays is calculated for an unobserved α transition to the 2 ⁺ state at 696.513 keV by requiring its hindrance factor to be greater than 1.0.

 † α intensity per 100 α decays.

[‡] $r_0(^{144}Nd)=1.57\ 2$ is the rounded-down value of r_0 obtained by using $T_{1/2}(^{148}Sm)=8\times10^{15}$ y in calculations and by requiring $Hf(1932.3\alpha)=1.0$.

[#] Absolute intensity per 100 decays.