¹⁴⁴Nd(p,p'),(d,d') **1993Pi06**

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	A. A. Sonzogni	NDS 93, 599 (2001)	1-Dec-2000

 E_p =30.3, 51.0 MeV, E_d =51.1 MeV. Measured $\sigma(\theta)$, deduced level J, π and β_{λ} parameter. Magnetic spectrograph, Resolution=12-15 keV in (p,p') and Resolution=15-22 keV in (d,d').

See ¹⁴⁴Nd(p,p') dataset (1991Co01) for additional (p,p') data. Agreement with this dataset can be found for level energies lower than 2.2 MeV.

Notation: $\beta_{\lambda p} = \beta_{\lambda}$ for (p,p') reactions and $\beta_{\lambda d} = \beta_{\lambda}$ for (d,d').

¹⁴⁴Nd Levels

E(level) [‡]	$\mathrm{J}^{\pi^{+}}$	Comments
696	2+	$\beta_{\lambda p} = 0.1200, \beta_{\lambda d} = 0.1180.$
1314	4 ⁺	$\beta_{\lambda p} = 0.0600, \beta_{\lambda d} = 0.0530.$
		$\beta_{\lambda p}(2_1^+ > 4^+) = 0.1450, \beta_{\lambda d}(2_1^+ > 4^+) = 0.1230.$
1510	3-	$\beta_{\lambda p} = 0.1255, \beta_{\lambda d} = 0.1180.$
1561	2+	$\beta_{\lambda p} = 0.0130, \beta_{\lambda d} = 0.0140.$
		$\beta_{\lambda p}(2_1^+ -> 2^+) = 0.1600, \beta_{\lambda d}(2_1^+ -> 2^+) = 0.1900.$
1791	6+	$\beta_{\lambda p} = 0.0200, \beta_{\lambda d} = 0.0190.$
2073	2+	$\beta_{\lambda p} = 0.0310, \beta_{\lambda d} = 0.0330.$
		$\beta_{\lambda p}(2_1^+ > 2^+) = -0.0800, \ \beta_{\lambda d}(2_1^+ > 2^+) = -0.0800.$
2093	5-	$\beta_{\lambda p} = 0.0548, \beta_{\lambda d} = 0.0400.$
2109	4+	$\beta_{\lambda p} = 0.0560, \beta_{\lambda d} = 0.0520.$
2185	(1^{-})	$\beta_{\lambda p} = 0.0066, \beta_{\lambda d} = 0.0066.$
2217	(6^+)	$\beta_{\lambda p} = 0.0310$.
2295	4+	$\beta_{\lambda p} = 0.0097, \beta_{\lambda d} = 0.0101.$
2327	(0^+)	$\beta_{\lambda p} = 0.0028, \beta_{\lambda d} = 0.0030.$
2367	2+	$\beta_{\lambda p} = 0.0238, \beta_{\lambda d} = 0.0241.$
2451	4+	$\beta_{\lambda p} = 0.0232, \beta_{\lambda d} = 0.0230.$
2527	2+	$\beta_{\lambda p} = 0.0303, \beta_{\lambda d} = 0.0300.$
2590	(1^{-})	$\beta_{\lambda p}$ =0.0038.
2606		
2675	(0^+)	$\beta_{\lambda p} = 0.0026, \beta_{\lambda d} = 0.0024.$
2694	2+	$\beta_{\lambda p} = 0.0105, \beta_{\lambda d} = 0.0098.$
2717	(1^{-})	$\beta_{\lambda p} = 0.0032, \beta_{\lambda d} = 0.0030.$
2779	3-	$\beta_{\lambda p} = 0.0560, \beta_{\lambda d} = 0.0547.$
2833	3-	$\beta_{\lambda p} = 0.0231, \beta_{\lambda d} = 0.0218.$
2898	2+	$\beta_{\lambda p} = 0.0131, \beta_{\lambda d} = 0.0105.$
2969	3-	$\beta_{Ap} = 0.0264, \beta_{Ad} = 0.0200.$
2987	4 ⁺	$\beta_{\lambda p} = 0.0280, \beta_{\lambda d} = 0.0250.$
3026	5-	$\beta_{\lambda p} = 0.0220, \beta_{\lambda d} = 0.0200.$
3049	5-	$\beta_{Ap} = 0.0490, \beta_{Ad} = 0.0440.$
3097	$(0^+,1^-)$	
3130	1-	$\beta_{\lambda p} = 0.0029, \beta_{\lambda d} = 0.0028.$
3180	(6^{+})	$\beta_{\lambda p} = 0.0260, \beta_{\lambda d} = 0.0170.$
3214	3-	$\beta_{Ap}^{2} = 0.0098, \beta_{Ad} = 0.0105.$
3240	(3^{-})	$\beta_{\lambda p} = 0.0080, \beta_{\lambda d} = 0.0082.$
3289	(3^{-})	$\beta_{\lambda p} = 0.0170, \beta_{\lambda d} = 0.0140.$
3340	4+	$\beta_{\lambda p} = 0.0152, \beta_{\lambda d} = 0.0158.$
3382	(4^{+})	$\beta_{Ap} = 0.0148, \beta_{Ad} = 0.0148.$
3401	5-	$\beta_{\lambda p} = 0.0190.$
3461	4+	$\beta_{\lambda p}^{T} = 0.0128, \beta_{\lambda d} = 0.0128.$
3493	5-	$\beta_{\lambda p} = 0.0224, \beta_{\lambda d} = 0.0182.$
3522	2+	$\beta_{\lambda p} = 0.0170.$
3555	2+	$\beta_{\lambda p} = 0.0134.$
3658	3-	$\beta_{\lambda p} = 0.0164.$

$^{144}\mathbf{Nd}(\mathbf{p,p'})\text{,}(\mathbf{d,d'})$

1993Pi06 (continued)

¹⁴⁴Nd Levels (continued)

 $^{^{\}dagger}$ As given by authors, from $\sigma(\theta)$ following coupled-channel calculations. ‡ level uncertainties are smaller than 2 keV for energies lower than 2.2 MeV and up to 4 keV for higher energies.