Adopted Levels, Gammas

		History			
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	A. A. Sonzogni	NDS 93,599 (2001)	1-Dec-2000		

2012Wa38

56 4780 58 8244 57 -269 56

1995Au04.

 $Q(\beta^-)=5582$ 14; S(n)=4750 15; S(p)=8202 15; $Q(\alpha)=-224$ 16 Note: Current evaluation has used the following Q record 5541 All data are from ¹⁴⁴Ba β^- decay.

Fission yields: 1987Ch16, 1986Di09.

¹⁴⁴La Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	(3^{-})	40.8 s 4	$\%\beta^{-}=100$
			T _{1/2} : weighted av: 40.6 s <i>10</i> (1979Ik07), 40 s <i>4</i> (1979En02), 42.1 s <i>7</i> (1977Sk02), 39.9 s <i>5</i> (1974Gr29), 40 s <i>3</i> (1974Ar17), 42.4 s <i>6</i> (1972Oh12), 39.8 s <i>6</i> (1969WiZX), 41 s <i>3</i> (1967Am01).
			J^{π} : log ft of \approx 7 to 2 ⁺ 397, and 4 ⁺ 939, levels gives $J^{\pi}=2^{-},3,4^{-}$. It is fed by 1 ⁻ levels making 4 ⁻ unlikely. None of the higher lying 1 ⁺ levels feeds the g.s. which makes it unlikely to be 2 ⁻ or 3 ⁺ .
16.231 10	(4-)		J^{π} : E2 feeding from (2 ⁻) state, M1 γ to (3 ⁻) g.s., bypassed by most other γ transitions from higher states.
103.855 6	(2 ⁻)		J^{π} : 103 γ is M1(+E2) which gives $J^{\pi} = (2^{-}, 3^{-}, 4^{-})$. $J^{\pi} = 4^{-}$ is eliminated as it is fed by M1+E2 transition from (2 ⁻) 172, level. 3 ⁻ is unlikely as it is fed by 1 ⁺ 603, level.
172.830 7	(2^{-})		J^{π} : $(430\gamma)(172\gamma)(\theta)$ with mult $(172)=M1+E2$ to (3^{-}) is consistent only with (2^{-}) .
181.84 <i>6</i>	(3-)		J ^{π} : no direct β feeding and not fed by 1 ⁺ levels. J ^{π} =1 ⁻ ,2 ⁻ not ruled out.
185.681 6	(1^{-})		J^{π} : 81 γ to (2 ⁻) is M1+E2.
215.167 6	(1^{-})		J^{π} : 111 γ to (2 ⁻) is M1+E2 and fed from 1 ⁺ level.
294.72 4	$(2^{-},1^{-})$		J^{π} : fed from 1 ⁺ and feeds (3 ⁻) g.s.
300.68 4	(0^{-})		J^{π} : log ft=6.1 from 0 ⁺ suggests $J^{\pi}=0^{-}$,1; it feeds a (1 ⁻) state through M1+E2 γ .
311.483 15			
382.94 4	$(1^{-},2^{-})$		J^{π} : fed from 1 ⁺ state and feeds (3 ⁻) g.s.
401.23 4	(2^{-})		J^{π} : $(202\gamma)(228\gamma)(\theta)$ is consistent with $1+(E1)J-(M1+E2)3^{-1}$ for J=1,2 but J=2 is preferred
			due to strong feeding of the g.s.
474.57 <i>3</i>	(1^{-})		J^{π} : log ft=6.2 from 0 ⁺ gives $J^{\pi}=0^{-},1$. $(515\gamma+514\gamma)(259\gamma+260\gamma)(\theta)$ is consistent with
			$1+(E1)1-(M1)1^{-1}$ suggesting 1^{-1} for both 474 and 475 levels.
475.47 4	(1-)		J^{π} : log $ft=5.9$ from 0 ⁺ gives $J^{\pi}=0^-, 1$. $(515\gamma+514\gamma)(259\gamma+260\gamma)(\theta)$ is consistent with $1+(E_1)1-(M_1)1^-$ suggesting 1^- for both 474 and 475 levels
477.45.6			
549.98 9			I^{π} : 1982Ch22 suggest it to be 2 ⁺ as it is not fed by β^{-} and is fed from π =+ levels.
603.37.3	1+		I^{π} : log $ft=4.6$ from 0 ⁺ .
655.18.5			π^{-} 1982Ch22 suggest it to be 2 ⁺ as it is not fed by β^{-} and is fed from π^{-+} levels.
669.88.5			I^{π} : 1982Ch22 suggest it to be 2 ⁺ as it is not fed by β^{-} and is fed from π^{-+} levels.
740.60 6			
756.18 4	1+		I^{π} : log ft=4.8 from 0 ⁺ .
990.61.5	1+		J^{π} : log $ft=4.9$ from 0 ⁺ .
1085.82 7	1^{+}		J^{π} : log ft=5.4 from 0 ⁺ .
1117.05 9	-		
1223.86 8			
1240.19 10			

 † Level energies have been calculated by the evaluator using least-squares fit to Ey.

[‡] Many of the J^{π} assignments are based upon $\gamma(\text{mult})$ and $\gamma\gamma(\theta)$ analysis of 1982Ch22 in β^- decay. The authors have assumed that the transitions from 1⁺ levels at 756, 991 and 1086 to levels <500 are predominantly E1. Supporting many J^{π} assingments, calculations of levels configurations in terms of shell-model and Nilsson orbitals can be seen in 1982Ch22.

$\gamma(^{144}\text{La})$

E_i (level)	J_i^{π}	Eγ	Iγ	E _f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
16.231	(4^{-})	16.33 5	100.0	0.0	(3^{-})	M1		38.8 16	
103.855	(2^{-})	103.855 6	100.0	0.0	(3 ⁻)	M1(+E2)		1.4 4	$\alpha(K)=0.97$ 13; $\alpha(L)=0.31$ 21; $\alpha(M)=0.07$ 5; $\alpha(N+)=0.018$ 12
172.830	(2^{-})	68.93 4	18.0.5	103.855	(2^{-})	M1(+E2)		5.5 23	$\alpha(K)=3.14; \alpha(L)=1.915; \alpha(M)=0.44; \alpha(N+)=0.119$
1/21000	(-)	156.600 7	98.5 23	16.231	(4 ⁻)	E2		0.414	$\alpha(K) = 0.301 \ 9; \ \alpha(L) = 0.088 \ 3; \ \alpha(M) = 0.0191 \ 6;$
		172 020 7	100 0 22	0.0	(2^{-})	M1 + E2		0.27.3	$\alpha(N+)=0.00506\ I6$
		1/2.828 /	100.0 25	0.0	(5)	MIT+E2		0.27 5	$a(\mathbf{N})=0.211$ 9, $a(\mathbf{L})=0.043$ 10, $a(\mathbf{M})=0.009$ 4; $a(\mathbf{N}+)=0.0023$ 10
181.84	(3 ⁻)	(8.9)	0.7	172.830	(2 ⁻)				γ not observed, I γ from coincidence spectrum and assuming M1 multipolarity
		181.79 8	100 5	0.0	(3 ⁻)	[M1,E2]		0.227 21	$\alpha(K)=0.181$ 6; $\alpha(L)=0.036$ 13; $\alpha(M)=0.008$ 3; $\alpha(N+)=0.0020$
185 681	(1^{-})	81 826 2	100.3	103 855	(2^{-})	M1+E2		3011	$\alpha(K) = 1.9.3; \alpha(L) = 0.9.7; \alpha(M) = 0.19.15; \alpha(N+) = 0.05.4$
105.001	(1)	185 72 0	136	0.0	(2^{-})	IF21		0.230	$\alpha(\mathbf{K}) = 0.174 \ 6: \ \alpha(\mathbf{L}) = 0.0441 \ 14: \ \alpha(\mathbf{M}) = 0.005 \ 3:$
		105.72 9	1.5 0	0.0	(5)	[1:2]		0.230	$\alpha(N)=0.174$ 0, $\alpha(L)=0.0441$ 14, $\alpha(M)=0.0095$ 5, $\alpha(N+)=0.00251$ 8
215.167	(1^{-})	29.49 5	4.03 17	185.681	(1^{-})				
		42.27 4	25.0 7	172.830	(2^{-})	M1(+E2)		33 20	$\alpha(K)=9.3\ 22;\ \alpha(L)=18\ 17;\ \alpha(M)=4\ 4$
		111.312 2	100.0 21	103.855	(2^{-})	M1+E2		1.1 3	α (K)=0.79 10; α (L)=0.24 15; α (M)=0.05 4; α (N+)=0.014 9
		215.18 13	3.8 9	0.0	(3-)	[E2]		0.140	$\alpha(K)=0.109 4; \alpha(L)=0.0247 8; \alpha(M)=0.00527 16; \alpha(N+)=0.00140 5$
294.72	$(2^{-},1^{-})$	109.10.5	31.5 15	185.681	(1^{-})				
	(_ ,-)	190.9.7	36.5.25	103.855	(2^{-})				
		294.66 13	100.0 25	0.0	(2^{-}) (3^{-})	[M1,E2]		0.053 3	$\alpha(K)=0.044$ 4; $\alpha(L)=0.0070$ 7; $\alpha(M)=0.00146$ 15;
300.68	(0 ⁻)	115.00 4	100.0	185.681	(1 ⁻)	M1+E2	1.09 11	1.00 3	$\alpha(N+)=0.00040$ 4 $\alpha(K)=0.722$ 10; $\alpha(L)=0.218$ 13; $\alpha(M)=0.047$ 3; $\alpha(N+)=0.0125$ 8
311.483		138.68 5	72 6	172.830	(2^{-})				
		207.614 16	100.0 20	103.855	(2^{-})				
382.94	$(1^{-},2^{-})$	71.46.6	37.1.9	311.483	(-)				
502.71	(1,2)	167 79 5	74.6	215 167	(1^{-})				
		107.45 13	50.5	185 681	(1^{-})				
		210 14 13	36.6.18	172 830	(2^{-})				
		210.14 15	100.6	172.050	(2^{-})				
401 22	(2^{-})	362.65 II	5 2	105 601	(3)				
401.25	(2)	213.34	50116	103.001	(1)				
		219.30 12	59.1 10	181.84	(3)	M1 . D0		0 112 2	$(\mathbf{X}) = 0.002, 2, (\mathbf{I}) = 0.016, 4, (\mathbf{M}) = 0.0024, 0$
		228.48 6	100.0 11	172.830	(2)	MI+E2		0.113 2	$\alpha(K)=0.092\ 2;\ \alpha(L)=0.016\ 4;\ \alpha(M)=0.0034\ 8;$ $\alpha(N+)=0.00091\ 20$
		401.20 12	51 4	0.0	(3 ⁻)				
474.57	(1^{-})	163.12 5	19.7 <i>17</i>	311.483					
	. /	259.38 4	100.0 17	215.167	(1^{-})				
		288.79 15	20.1 17	185.681	(1^{-})				
175 17	(1^{-})	74.29 6	10.9 7	401.23	(2^{-})				
4/3.4/	· · /		10.7 /		<u> </u>				

Ν

$\gamma(^{144}La)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	J_f^π
475.47	(1 ⁻)	180.83 9	28 <i>4</i>	294.72	$(2^{-},1^{-})$	756.18	1^{+}	281.38 13	3.3 8	474.57	(1^{-})
		289 71 15	100 4	185 681	(1^{-})			373 30 14	32.0.4	382.94	(2) $(1^{-}2^{-})$
		293.54 13	68.8 16	181.84	(3^{-})			444.73 12	6.7 4	311.483	(1,2)
		302.52 [‡] 15	33 [‡] 5	172.830	(2 ⁻)			455.64 12	28.2 5	300.68	(0 ⁻)
		371.50 14	97	103.855	(2^{-})			541.06 12	100 3	215.167	(1 ⁻)
477.45		165.90 7	98 17	311.483				570.50 12	67.1 9	185.681	(1^{-})
		291.72 [‡] <i>15</i>	74 [‡] 17	185.681	(1^{-})			583.29 12	54.5 9	172.830	(2 ⁻)
- 40.00		304.94 14	100 8	172.830	(2^{-})	000 (1		651.94 12	4.5 9	103.855	(2^{-})
549.98	1+	334.78 14	100.0	215.167	(1)	990.61	1'	320.84 11	13.0 4	669.88	
003.37	1	202.1772	0.7912	401.25	(2)			555.77 14	1.1 12	475 47	(1-)
		291.72* 15	12.8* 4	311.483	(0-)			515.45 14	100.6	4/5.4/	(1)
		302.52* 15	1.4* 4	300.68	(0) $(2^{-}1^{-})$			516.30 14	/6.0	4/4.5/	(1)
		388 19 6	73 7 3	294.72	(2,1) (1^{-})			589.40 12 678 56 12	0.27 508	311 483	(2)
		417.69 7	17.0 4	185.681	(1^{-})			689.90 17	7.5 5	300.68	(0^{-})
		430.48 [‡] <i>12</i>	100.0 [‡] <i>19</i>	172.830	(2-)			817.55 12	10.7 5	172.830	(2 ⁻)
		499.59 12	1.1 3	103.855	(2 ⁻)	1085.82	1^{+}	430.48 [‡] <i>12</i>	39 [‡] 12	655.18	
655.18		440.15 12	48.5 20	215.167	(1 ⁻)			702.85 12	100 3	382.94	$(1^-, 2^-)$
		473.35 12	100 3	181.84	(3-)			785.12 12	94.3 21	300.68	(0-)
		482.44 12	67.3 20	172.830	(2^{-})			791.32 12	40 4	294.72	$(2^{-},1^{-})$
660.88		551.47 13	19.1 24	103.855	(2) 1 ⁺	1117.05		8/0.6 4	23.5 21	215.107	(1)
009.88		496 97 13	47 5	172.830	(2^{-})	1117.05		822 33 13	64 5	294 72	$(2^{-} 1^{-})$
740.60		137.14 5	$5.\times10^{1}$ 3	603.37	1+	1223.86		233.30 11	45.1 15	990.61	$(2^{+}, 1^{+})$
		525.95 12	100 4	215.167	(1 ⁻)			467.57 12	100 6	756.18	1+
756.18	1^{+}	101.11 8	12.2 4	655.18				673.97 16	32 8	549.98	
		152.85 5	18.9 9	603.37	1^{+}	1240.19		249.52 11	100 4	990.61	1+
		206.10 15	4.5 3	549.98				484.14 17	32 5	756.18	1+

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned

multipolarities, and mixing ratios, unless otherwise specified.

[‡] Multiply placed with intensity suitably divided.

ω

Adopted Levels, Gammas

¹⁴⁴₅₇La₈₇

S

 $^{144}_{57} La_{87}$ -5

From ENSDF

 $^{144}_{57} La_{87}$ -5

Adopted Levels, Gammas

¹⁴⁴₅₇La₈₇