Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	21-Feb-2008						

 $Q(\beta^{-}) = -8.00 \times 10^{3} \text{ syst}; S(n) = 1.06 \times 10^{4} \text{ syst}; S(p) = -270 \ 16; Q(\alpha) = 3.4 \times 10^{3} \ 8 2012 \text{ Wa38}$

Note: Current evaluation has used the following Q record -7699 syst 10990 syst -271 16 2860 syst 2003Au03,2008Ra03. Q(β^-): from mass excess of $-36910\ 400\ (syst,2003Au03)\ for ^{144}Er$ and measured mass excess of $-44609.5\ 90\ (2008Ra03)$.

S(p) from measured masses (2008Ra03). 2003Au03 give 160 360 from systematics.

 $\Delta Q(\beta^{-})=400, \Delta S(n)=500 \text{ keV}, \Delta Q(\alpha)=850 \text{ keV} (2003Au03).$

 $Q(\varepsilon p)=7950 \ 300 \ (2003Au03).$

Theory: 1999La23.

Produced by 92 Mo(58 Ni,3p3n), E=325 MeV (1986Wi15). Identification using OASIS mass separator, β -delayed protons in coincidence with Dy K x-rays.

Mass measurement by Penning-trap spectrometer: 2008Ra03 (also 2007Ra37).

¹⁴⁴Ho Levels

Cross Reference (XREF) Flags

A 144 Ho IT decay (506 ns)

B 92 Mo(54 Fe,pn γ)

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	(5 ⁻)	0.7 s 1	AB	$\%\varepsilon + \%\beta^+ = 100; \%\varepsilon p = ?$
				$T_{1/2}$: from timing of delayed protons (1986Wi15).
60.6.2	(6^{-})		٨R	Configuration= $[\pi h_{11/2} \otimes v s_{1/2}] + [\pi h_{11/2} \otimes v d_{3/2}].$ $I^{\pi} \cdot M_1 + E_2 \propto t_0 (5^-)$
208.9.2	(0^{-})		AR	I^{π} : F2 γ to (5 ⁻). M1+F2 γ to (6 ⁻)
265 3 3	(7) (8^+)	506 ns 20	AR	S = 100
200.0 0	(0)	200 115 20		J^{π} : E1 γ to (7 ⁻): probable configuration= $\pi h_{11/2} \otimes \gamma h_{11/2}$.
				$T_{1/2}$: from $\gamma(t)$: weighted average of 564 ns 60 (2006Ta08) and 500 ns 20
				(2001Sc09).
612.8 [#] 4	(9+)		В	
911.9 [‡] 5	(10^{+})		В	
1274.9 [#] 5	(11^{+})		В	
1413.3 [‡] 5	(12^{+})		В	
1842.6 [#] 5	(13 ⁺)		В	
2136.8 [‡] 6	(14^{+})		В	
2604.6 [#] 7	(15^{+})		В	
2992.8 [‡] 7	(16 ⁺)		В	
3473.1 ^{# 7}	(17^{+})		В	
3878.0 [‡] 8	(18^{+})		В	
4691.1 [‡] <i>10</i>	(20^{+})		В	

[†] For high-spin (J>8) levels, assignments are tentative and are based on assumed configuration and band structures.

^{\ddagger} Band(A): Band based on (10⁺). Possible configuration= $\pi h_{11/2} \otimes v(h_{11/2}, f_{7/2})$ or $\pi h_{11/2} \otimes v(s_{1/2}, d_{3/2})$.

[#] Band(a): Band based on (9⁺). Possible configuration= $\pi h_{11/2} \otimes \nu(h_{11/2}, f_{7/2})$ or $\pi h_{11/2} \otimes \nu(s_{1/2}, d_{3/2})$.

1

Adopted Levels, Gammas (continued) <u>γ(¹⁴⁴Ho)</u>										
60.6	(6 ⁻)	60.4 <i>3</i>	100	0.0 (5 ⁻)	M1+E2	17 6	$\frac{\text{ce}(\text{K})/(\gamma+\text{ce})=0.34 \ 16; \ \text{ce}(\text{L})/(\gamma+\text{ce})=0.5 \ 6;}{\text{ce}(\text{M})/(\gamma+\text{ce})=0.11 \ 9; \ \text{ce}(\text{N}+)/(\gamma+\text{ce})=0.028 \ 25} \\ \frac{\text{ce}(\text{N})/(\gamma+\text{ce})=0.025 \ 22; \ \text{ce}(\text{O})/(\gamma+\text{ce})=0.003 \ 3;}{\text{ce}(\text{P})/(\gamma+\text{ce})=2.1\times10^{-5} \ 15}$			
208.9	(7 ⁻)	148.2 2	100 18	60.6 (6 ⁻)	M1+E2	0.77 9	$ce(K)/(\gamma+ce)=0.31 7; ce(L)/(\gamma+ce)=0.09 4;ce(M)/(\gamma+ce)=0.022 9; ce(N+)/(\gamma+ce)=0.0057 22ce(N)/(\gamma+ce)=0.0050 20; ce(O)/(\gamma+ce)=0.00065 21; ce(P)/(\gamma+ce)=1.7\times10^{-5} 8$			
		209.0 2	41 11	0.0 (5 ⁻)	E2	0.211	$ce(K)/(\gamma+ce)=0.1166 \ 16; \ ce(L)/(\gamma+ce)=0.0445 \ 7; ce(M)/(\gamma+ce)=0.01050 \ 16; ce(N+)/(\gamma+ce)=0.00269 \ 5 ce(N)/(\gamma+ce)=0.00238 \ 4; \ ce(O)/(\gamma+ce)=0.000299 5; \ ce(P)/(\gamma+ce)=5.58\times10^{-6} \ 9$			
265.3	(8 ⁺)	56.4 2	100	208.9 (7 ⁻)	E1	1.37	α for 56.7. This E γ is too close to K-shell binding energy, thus it is difficult to obtain a reliable α value.			
612.8	(9 ⁺)	347.5 [@] 2	100	265.3 (8 ⁺)						
911.9	(10^{+})	299.1 [@] 3	100	612.8 (9+)						
1274.9	(11^{+})	362.9 [@] 1	100	911.9 (10+)					
1413.3	(12^{+})	501.6 2	100	911.9 (10+)					
1842.6	(13 ⁺)	429.6 [@] 3	100 8	1413.3 (12+))					
		567.3 [@] 3	40 20	1274.9 (11+))					
2136.8	(14^{+})	723.6 4	100	1413.3 (12+))					
2604.6	(15^{+})	467.8 [@] 2	100 11	2136.8 (14+))					
		761.7 [@] 8	84 16	1842.6 (13+))					
2992.8	(16 ⁺)	856.0 2	100	2136.8 (14+))					
3473.1	(17^{+})	868.5 [@] 3	100	2604.6 (15+)					
3878.0	(18^+)	885.2 5	100	2992.8 (16+))					
4691.1	(20^{+})	813.1 6	100	3878.0 (18+))					

 † From $^{92}Mo(^{54}Fe,pn\gamma).$ ‡ From ^{144}Ho IT decay (506 ns).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

¹⁴⁴₆₇Ho₇₇

Adopted Levels, Gammas

