¹¹⁰Pd(³⁷Cl,3nγ) **1996Pi11**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. A. Sonzogni	NDS 93, 599 (2001)	1-Dec-2000

Includes 1995Pi09. E=140-160 MeV, measured γ , $\gamma\gamma$, DSAM (plunger). Nordball array: 20 Compton-suppressed Ge plus 60-element inner ball; also 2 low-energy photons detectors (LEPs). Only information above (8⁻) isomer was reported.

¹⁴⁴Eu Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
1127.9 [‡]	(8-)	1.0 [‡] μs	
1338.3	(9-)	5.0^{\ddagger} ns	
1669.7	(9 ⁺)	76 ps 7	Additional information 1.
1669.7+x	(10 ⁺)		Hypothetical level corresponding to a $(\pi h_1 1/2 v h_1 1/2)^{10+}$ configuration. The energy x is expected to be small $\approx 50 \text{ keV}$.
2162.0+x	(11+)		This level was seen by 1981Ha25 and interpreted as having $J^{\pi}=10^+$. Based on what is known for neighboring nuclei, 1996Pi11 expect this level to have $J^{\pi}=11^+$, and speculate about the existence of a 10 ⁺ level at 1669.7+x keV.
2801.8+x	(11^{+})		
2903.8+x	(12^{+})		
3369.4+x	(12^{+})		
3454.5+x	(13^{+})		
3454.5+y	(14)		No γ 's were observed de-populating this level. Its existance is based on timing data from the plunger. it is assumed to feed the 3454.5 + x level. The energy difference, Y-x, is expected to be ≤ 200 keV.
3486.0+y	(15)		
3650.5+y	(16)	<7 ps	
4366.8+y	(17)		
4399.5+y	(15)		
4508.4+y	(16)	<7 ps	
4597.2+y	(17)		
4791.0+y	(17)		
4851.2+y	(18)		
5174.6+y	(18)		
5225.5+y	(19)		
5671.4+y			
5844.4+y	(19)		
6171.6+y	(20)		
6374.5+y	(20)		
6426.5+y	(20)		
6454.9+y	(21)		
6/15.4+y	(22)		
0/4/.9+y	(21)		reeds 5225+y level through unknown transition(s).
0842.0+y	(21)		
7320.4+Y	(23)		Foods 5005 Ly level through unknown transition(a)
7530.1+y	(21)		reeds 5225+y level through unknown transition(s).
/64/.2+y	(24)		
$8130.0 \pm y$	(23)		
$8214.2 \pm y$ $8220.7 \pm y$	(22)		
$8220.7 \pm y$ $8223.8 \pm y$	(22)		
8436 5+v	(23)		
8715 5+v	(23)		
9079.1 + v	(25)		
9083.1 + v	(25)		
9533.2+v	(26)		
9889.9+y	(27)		
-			

¹¹⁰Pd(³⁷Cl, $3n\gamma$) 1996Pi11 (continued)

¹⁴⁴Eu Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
10060.4+y	(27)		
10217.8+y	(27)		
10641.6+y 10873.7+y	(28) (29)		
12035.1+y	(2)) (31)		
z# Ĵ	. /		E(level): z > 5 MeV.
z+831.7 [#]			E(level): from γ energy difference depopulating z+1922 level.
z+1921.6 [#]	J		
2568.9+z [#]	J+2		
3131.3+z	J+3		
3463.3+z [#]	J+4		
3995.6+z [#]	J+5		
4056.2+z [#]	J+5		
4556.5+z [#]	J+6		
4914.6+z [#]	J+7		
5394.7+z [#]	J+9	8.5 ps <i>3</i>	
$6053.2 + z^{\#}$	J+11	<1.4 ps	
6962.7+z [#]	J+13	<0.35 ps	
8121.4+z [#]	J+15		
9491.4+z [#]	J+17		
11033.7+z [#]	J+19		

[†] From ado values, α and shell-model calculations. [‡] From Adopted Levels.

[#] Band(A): $\Delta J=2$ band.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	Comments
32 #		3486.0+y	(15)	3454.5+y	(14)		E_{γ} : from energy difference, γ was not observed.
85.2 <i>1</i>	74	3454.5+x	(13^{+})	3369.4+x	(12^{+})	M1	$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 0.84 \ 10.$
88.8 1	75	4597.2+y	(17)	4508.4+y	(16)	M1	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.77 \ 10.$
102.1 2	25	2903.8+x	(12^{+})	2801.8+x	(11^{+})	M1	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.76 \ 9.$
108.9 <i>1</i>	36	4508.4+y	(16)	4399.5+y	(15)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.75 \ 8.$
164.5 <i>1</i>	311	3650.5+y	(16)	3486.0+y	(15)	M1	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.82$ 5.
210.4 1	346	1338.3	(9 ⁻)	1127.9	(8 ⁻)	M1	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.55 4.$
212.6 2	60	8436.5+y	(23)	8223.8+y			$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.80 \ 8.$
215.8 2	66	8436.5+y	(23)	8220.7+y	(22)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.73$ 7.
222.3 2	62	8436.5+y	(23)	8214.2+y	(22)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.67$ 7.
^x 249.5 5	32						$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.61$ 12.
^x 251.4 5	58						$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.06\ 21.$
254.0 2	247	4851.2+y	(18)	4597.2+y	(17)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.77 8.$
^x 256.5 3	140						$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.99$ 15.
^x 257.8 4	86						$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.77$ 16.
260.6 3	44	6715.4+y	(22)	6454.9+y	(21)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.72$ 10.
279.0 1	280	8715.5+y	(24)	8436.5+y	(23)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.69 \ 6.$
283.3 2	111	6454.9+y	(21)	6171.6+y	(20)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.78$ 7.
x307.0 2	104						$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.93 8.$

 $\gamma(^{144}\text{Eu})$

Continued on next page (footnotes at end of table)

¹¹⁰Pd(³⁷Cl,3nγ) **1996Pi11** (continued)

$\gamma(^{144}\text{Eu})$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
327.1.4	28	6171.6+v	(20)	5844.4+v	(19)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 0.66.11$
331.4.2	452	1669.7	(9^+)	1338.3	(9^{-})	E1	$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.44.8$
358.3 3	31	4914.6+z	J+7	4556.5+z	J+6	21	$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 0.96$ 15.
363.6.2	151	9079.1+v	(25)	8715.5+v	(24)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 0.696$
367.7.2	118	9083.1 + y	(25)	8715.5+y	(24)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 0.64.6$
374 3 2	364	5225 5+v	(19)	4851.2 + y	(18)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 0.73.5$
x415 1 3	69	5225.5 T J	(1))	10511219	(10)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 0.81 \ 12$
415.6.5	17	$6842.0\pm v$	(21)	$6426.5 \pm v$	(20)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.1.3$
x ₁₃₅ 0 1	37	0042.01 y	(21)	0+20.5 Ty	(20)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 0.86.15$
454.2.3	08	$0533.2 \pm v$	(26)	0070 1±v	(25)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 0.83.11$
480.1.2	220	5304.7 ± 7	(20) L+0	4014 6+7	(23) I + 7		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 0.03 II.$ $I_{\alpha}(37^{\circ})/I_{\alpha}(70^{\circ}) = 1.43 0$
480.1 2	176	1951 2 Ly	JT9 (19)	4914.042	$J \pm 7$ (17)		$I_{\gamma}(57)/I_{\gamma}(79) = 1.45.9.$ $I_{\alpha}(27^{\circ})/I_{\alpha}(70^{\circ}) = 0.72.5$
464.3 2	170	4631.2+y	(10)	4300.8+y	(17)	M1	$\Gamma\gamma(57)/\Gamma\gamma(79) = 0.72.3.$ $\Gamma_{\gamma}(27^{\circ})/\Gamma_{\gamma}(70^{\circ}) = 0.71.4$
492.2 Z	679	2102.0+X	(11)	1009.7+X	(10)	IVII	$1\gamma(57)/1\gamma(79) = 0.714.$ L(278)/L(708) 1.65.25
520.8 5	57	7947 2	(24)	7226 4	(22)		$1\gamma(57)/1\gamma(79) = 1.05 23.$ L ₁ (278)/L ₁ (708) = 0.41 15
520.8 5	12	/84/.2+y	(24)	/320.4+y	(23)		$1\gamma(57)/1\gamma(79) = 0.41$ 13.
527.14	36	10060.4+y	(27)	9533.2+y	(26)		$1\gamma(37)/1\gamma(79) = 0.65 \ 12.$
532.2 3	88	3995.6+z	J+5	3463.3+z	J+4		$1\gamma(37^{\circ})/1\gamma(79^{\circ}) = 0.82$ 11.
541.7 2	548	1669.7	(9 ⁺)	1127.9	(8 ⁻)	El	$1\gamma(37^{\circ})/1\gamma(79^{\circ}) = 0.80$ 4.
550.7 2	482	3454.5+x	(13^{+})	2903.8+x	(12^{+})		$1\gamma(37^{\circ})/1\gamma(79^{\circ}) = 0.60$ 4.
562.4 4	35	3131.3+z	J+3	2568.9+z	J +2		$1\gamma(37^{\circ})/1\gamma(79^{\circ}) = 0.72$ 12.
577.4 2	113	5174.6+y	(18)	4597.2+y	(17)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.61$ 6.
581.2 4	15	10641.6+y	(28)	10060.4+y	(27)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.71$ 15.
592.7 4	26	4056.2+z	J+5	3463.3+z	J+4		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.89 \ 20.$
611.0 <i>3</i>	40	7326.4+y	(23)	6715.4+y	(22)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.64$ 12.
^x 620.5 2	102						$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.71 \ 8.$
^x 635.3 4	27						$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.58 \ 14.$
647.3 <i>3</i>	203	2568.9+z	J+2	z+1921.6	J		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.45 \ 12.$
658.5 <i>3</i>	199	6053.2+z	J+11	5394.7+z	J+9		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.59 \ 21.$
669.8 <i>5</i>	48	5844.4+y	(19)	5174.6+y	(18)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.67 \ 10.$
684.6 <i>4</i>	43	10217.8+y	(27)	9533.2+y	(26)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.85 \ 11.$
716.3 2	176	4366.8+y	(17)	3650.5+y	(16)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.57$ 6.
741.7 2	420	2903.8+x	(12^{+})	2162.0+x	(11^{+})		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.96 6.$
806.8 <i>3</i>	88	9889.9+y	(27)	9083.1+y	(25)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.33$ 15.
809.6 5	17	8136.0+y	(25)	7326.4+y	(23)		$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.8 4.$
810.8 4	30	9889.9+y	(27)	9079.1+y	(25)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.65\ 25.$
817.7 4	36	9533.2+v	(26)	8715.5+v	(24)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.57\ 25.$
858 1	10	4508.4 + v	(16)	3650.5 + v	(16)		
858.3 3	63	4914.6+z	J+7	4056.2 + z	J+5		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.34$ 15.
864.2.3	65	3995.6+z	J+5	3131.3+z	J+3		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.33.15$
894.4.2	149	3463.3+z	J+4	2568.9+z	J+2		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.51 I_{2}$
909 5 2	102	6962.7+z	I+13	6053.2+z	I+11		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.31.10$
919.0.3	176	4914 6+z	J+15 I+7	3995 6+z	I+5		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.52.11$
x925.2.5	18	1911.012	517	5775.0TE	515		
944.9.5	10	43995 + v	(15)	$3454.5 \pm v$	(14)		
946.0.3	271		(13)	$57255 \pm y$	(14)		$I_{2}(37^{\circ})/I_{2}(79^{\circ}) = 0.70, 10$
946.6.5	50	$4507.2 \pm v$	(20) (17)	$3650.5 \pm y$	(15)		1/(57)/(1/(77)) = 0.7010.
08135	5	$4397.2 \pm y$	(17) (27)	$0070.1 \pm y$	(10)		
083.8.3	60	10000.4+y 10873.7+y	(27)	$9079.1 \pm y$	(23)		$I_{\alpha}(27^{\circ})/I_{\alpha}(70^{\circ}) = 1.53.18$
x1006 5 2	67	10075.7 - Y	(27)	9009.9TY	(27)		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.33.10.$ $I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.41.16$
x1012 6 A	64						$I_{\gamma}(37)/I_{\gamma}(77) = 1.71 IO.$ $I_{\gamma}(27^{\circ})/I_{\gamma}(70^{\circ}) = 1.22 I5$
x1012.04	20						$I_{\gamma}(J - J)I_{\gamma}(J - J) = 1.55 IJ.$ $I_{\alpha}(27^{\circ})/I_{\alpha}(70^{\circ}) = 1.22 25$
1010.0 J	27 210	1509 4	(16)	2106 0	(15)		$I_{\gamma}(J - J)I_{\gamma}(J - J) = 1.25 2J.$ $I_{\gamma}(27^{\circ})/I_{\gamma}(70^{\circ}) = 0.81 0$
1022.4 3 x1040 7 5	248	4508.4+y	(10)	3480.0+y	(15)		$I\gamma(5/)/I\gamma(79) = 0.81$ 9. $I_{2}(27^{\circ})/I_{2}(79^{\circ}) = 0.86$ 15
1040.7 J	22						$\Gamma\gamma(5/)/\Gamma\gamma(79) = 0.80$ I.3. $\Gamma_{2}(27^{\circ})/\Gamma_{2}(79^{\circ}) = 1.0.5$
1045.2.4 X1040.4.4	3/						$I\gamma(5/)/I\gamma(79) = 1.9.5.$
1049.4 4	51	9426 5 .	(22)	7250 1	(21)		$1\gamma(57)/1\gamma(79) = 1.58 20.$
1080.4 4	48	8436.5+y	(23)	/350.1+y	(21)		$1\gamma(5/^{-})/1\gamma(/9^{\circ}) = 1.51 \ 20.$
1089.9 4	55	z+1921.6	J	Z+831./			$1\gamma(37)/1\gamma(79^{\circ}) = 1.55$ 18.

Continued on next page (footnotes at end of table)

110 Pd(37 Cl,3n γ) 1996Pi11 (continued)

$\gamma(^{144}\text{Eu})$ (continued)

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Comments
1093.6 4	54	4556.5+z	J+6	3463.3+z	J+4	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.26$ 15.
1108.5 5	16	10641.6+y	(28)	9533.2+y	(26)	$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.2 \ 3.$
^x 1120.4 3	50	2		2		$I_{\gamma}(37^{\circ})/I_{\gamma}(79^{\circ}) = 1.2 4.$
1132.1 <i>3</i>	81	2801.8+x	(11^{+})	1669.7+x	(10^{+})	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.66 \ 10.$
1140.5 5	37	4791.0+y	(17)	3650.5+y	(16)	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.84 \ 20.$
^x 1141.0 4						$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.1 4.$
1149.0 4	39	6374.5+y	(20)	5225.5+y	(19)	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.90 \ 20.$
1158.7 5	51	8121.4+z	J+15	6962.7+z	J+13	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.36$ 15.
1161.4 5	45	12035.1+y	(31)	10873.7+y	(29)	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.44$ 16.
1201.0 4	57	6426.5+y	(20)	5225.5+y	(19)	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.88 \ 12.$
1207.5 <i>3</i>	161	3369.4+x	(12^{+})	2162.0+x	(11^{+})	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.52$ 6.
1233.9 4	65	2903.8+x	(12^{+})	1669.7+x	(10^{+})	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.26 \ 14.$
1292.3 <i>3</i>	92	3454.5+x	(13^{+})	2162.0+x	(11^{+})	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.39$ 14.
^x 1338.1 5	27					$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.83 \ 20.$
1369.9 6	13	9491.4+z	J+17	8121.4+z	J+15	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.48\ 25.$
1372.1 5	16	8214.2+y	(22)	6842.0+y	(21)	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.05 \ 25.$
1381.9 5	11	8223.8+y		6842.0+y	(21)	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.66 \ 30.$
1472.8 5	16	8220.7+y	(22)	6747.9+y	(21)	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.92 \ 20.$
1499.2 8	4	8214.2+y	(22)	6715.4+y	(22)	
1508.3 8	3	8223.8+y		6715.4+y	(22)	
1542.3 6	10	11033.7+z	J+19	9491.4+z	J+17	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.35 \ 23.$
1699.8 <i>3</i>	143	3369.4+x	(12^{+})	1669.7+x	(10^{+})	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.47$ 15.
1759.3 5	15	8214.2+y	(22)	6454.9+y	(21)	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.81 \ 20.$
1768.7 <i>6</i>	8	8223.8+y		6454.9+y	(21)	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 0.8 \ 3.$
1921.6 7	9	z+1921.6	J	Z		
2020.9 8	8	5671.4+y		3650.5+y	(16)	$I\gamma(37^{\circ})/I\gamma(79^{\circ}) = 1.9$ 4.

[†] For E=160 MeV, uncertainties are \approx 5%, larger for weak and complex lines. [‡] Based on intensity balance arguments or ce measurements. [#] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 $^{144}_{63}\mathrm{Eu}_{81}$

¹¹⁰Pd(³⁷Cl,3nγ) 1996Pi11

¹⁴⁴₆₃Eu₈₁

¹¹⁰Pd(³⁷Cl,3nγ) 1996Pi11

 $^{144}_{63}\rm{Eu}_{81}$