248 Cm SF decay 2009Rz02

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 30-Apr-2010

Parent: 248 Cm: E=0; $J^{\pi}=0^+$; $T_{1/2}=3.48\times10^5$ y 6; %SF decay=?

Includes ²³⁵U(n,F) and ²⁴²Am(n,F).

Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, ce, ce(γ) coin, ce(fragment) coin, γ (fragment) coin, half-lives by delayed timing method using EUROGAM2 and Gammasphere arrays for prompt γ rays from ²⁴⁸Cm SF decay. Delayed γ rays following induced fission of ²³⁵U and ²⁴²Am were measured using the Lohengrin mass spectrometer at the ILL reactor in Grenoble. Comparisons with quasiparticle rotor model and deformed model calculations.

The 42.8 and 92.2 levels and associated γ rays are from delayed γ -ray study in 235 U(n,F). The prompt 108-115-263-404-474-535-565 γ cascade is from 248 Cm SF decay.

Level scheme is established through double gating of γ rays in the cascade.

¹⁴⁴Cs Levels

E(level) [†]	J^π	T _{1/2}	Comments				
0.0 [‡] 42.8 [‡] 3	(1 ⁻) (2 ⁻)						
92.2 [‡] 5	(4-)	1.1 μs <i>1</i>	$T_{1/2}$: from 2009Rz02, measurement of delayed γ rays from fission of 242 Am by neutrons at Lohengrin facility.				
0+x [#]	J		E(level): this level may be the same as 92.2, (4 ⁻), in which case x=92.2 Quasiparticle-rotor model calculations (see figure 13 in 2009Rz02) suggest a low-lying 4 ⁻ with configuration= $\pi(3/2[411]+3/2[422])\otimes \nu(3/2[523]+3/2[521])$, $K^{\pi}=3^{-}$. This configuration also reproduces a 5 ⁻ state at 200 keV and 6 ⁻ just above this energy.				
107.9+x [#] 6	J+1	≤8 ns	E(level): 200.1 if x=92.2. J^{π} : possible (5 ⁻) from model calculations. $T_{1/2}$: from 2009Rz02, time spectra for 107.9 γ and 404.7 γ from ²⁴⁸ Cm SF decay. Presence of a nanosecond isomer is also confirmed in measurement of delayed γ rays following ²³⁵ U(n,F) at Lohengrin facility, and from ionic charge distribution measured in the decay of ¹⁴⁴ Cs (2009Rz02).				
222.5+x ^{#@} 6	J+2		E(level): 314.7 if x=92.2. J^{π} : possible (6 ⁻) bandhead of configuration= $\pi d_{5/2} v f_{7/2}$.				
485.8+x ^{#@} 7	J+4		E(level): 578.0 if $x=92.2$. J^{π} : possible (8 ⁻) band member.				
890.5+x ^{#@} 8	J+6		E(level): 982.7 if $x=92.2$. J^{π} : possible (10 ⁻) band member.				
1364.3+x ^{#@} 8			E(level): 1456.5 if $x=92.2$.				
1899.4+x ^{#@} 9			E(level): 1991.6 if x=92.2. Level not included in Adopted Levels since 535γ is placed from $1426.0+x$ level, as in 252 Cf SF decay.				
2464.4+x? ^{#@} 9			E(level): not included in the Adopted Levels due to tentative nature of 565γ . E(level): 2556.6 if $x=92.2$.				

[†] From Ey's, assuming $\Delta(E\gamma)=0.3$ keV (evaluator).

[‡] Possible member of $\pi 3/2[422] \otimes \nu 5/2[523]$ multiplet. Level observed in ²³⁵U(n,F).

[#] Level observed in prompt γ study of ²⁴⁸Cm SF decay.

[@] Band(A): Band based on (6⁻) (?).

²⁴⁸Cm SF decay 2009Rz02 (continued)

$\gamma(^{144}\mathrm{Cs})$

Εγ	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α &	Comments
42.8 [†]		42.8	(2-)	0.0	(1-)	(M1+E2)	27 17	$\alpha(K)$ =8.91 14 ; $\alpha(L)$ =14 13 ; $\alpha(M)$ =3 3 ; $\alpha(N+)$ =0.7 7 $\alpha(N)$ =0.6 6 ; $\alpha(O)$ =0.07 7 ; $\alpha(P)$ =0.00031 5 Mult.: M1 or E2 from I(x ray)/I $\gamma \approx 7$, when gated on L-conversion line of 49-keV transition, but pure E2 assignment is excluded from intensity balance considerations, thus M1+E2 is most likely.
49.4 [†]		92.2	(4-)	42.8	(2-)	(E2)	24.7	$\alpha(L)$ exp=10 4 (2009Rz02) $\alpha(K)$ =7.47 11; $\alpha(L)$ =13.57 19; $\alpha(M)$ =2.97 5; $\alpha(N+)$ =0.664 10 $\alpha(N)$ =0.597 9; $\alpha(O)$ =0.0673 10; $\alpha(P)$ =0.000205 3
107.9 [‡]	100 5	107.9+x	J+1	0+x	J	(M1+E2)#	1.1 4	$\alpha(K)$ =0.79 17; $\alpha(L)$ =0.23 15; $\alpha(M)$ =0.05 4; $\alpha(N+)$ =0.011 7 $\alpha(N)$ =0.010 7; $\alpha(O)$ =0.0012 8; $\alpha(P)$ =2.57×10 ⁻⁵ 13
114.6 [‡]	99 6	222.5+x	J+2	107.9+x	J+1	(M1+E2)#	0.9 3	$\alpha(K)$ =0.66 14; $\alpha(L)$ =0.18 11; $\alpha(M)$ =0.038 24; $\alpha(N+)$ =0.009 6 $\alpha(N)$ =0.008 5; $\alpha(O)$ =0.0010 6; $\alpha(P)$ =2.16×10 ⁻⁵ 10
263.3 [‡]	48 <i>4</i>	485.8+x	J+4	222.5+x	J+2	Q [@]		<i>u</i> (1)-0.000 <i>J</i> , <i>u</i> (<i>J</i>)-0.0010 <i>J</i> , <i>u</i> (1)-2.10×10 10
404.7 [‡]	39 <i>3</i>	890.5+x	J+6	485.8+x		Q [®]		
473.8 [‡]	35 4	1364.3+x		890.5+x		•		
535.1 [‡]	12 2	1899.4+x		1364.3+x				
565.0 [‡] <i>a</i>	5 1	2464.4+x?		1899.4+x				E_{γ} : not included in the Adopted Gammas due to its tentative nature.

 $^{^{\}dagger}$ From delayed γ -ray study in 235 U(n,F). ‡ From prompt γ study in 248 Cm SF decay. Identification of γ rays in 144 Cs is based on coincidence with known γ rays from complementary fission fragments of 101 Nb and 103 Nb.

[#] $\Delta J=1$, D+Q transition from $(114.6\gamma)(107.9\gamma)(\theta)$; intensity balance supports M1+E2.

[@] $\Delta J=2$, Q transition from $(404.7\gamma)(263.3\gamma)(\theta)$.

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

²⁴⁸Cm SF decay 2009Rz02

Band(A): Band based on (6^-) (?)

