248 Cm SF decay 2009Rz02 Type Author Citation Literature Cutoff Date Full Evaluation Balraj Singh ENSDF 30-Apr-2010 Parent: 248 Cm: E=0; $J^{\pi}=0^+$; $T_{1/2}=3.48\times10^5$ y 6; %SF decay=? Includes ²³⁵U(n,F) and ²⁴²Am(n,F). Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, ce, ce(γ) coin, ce(fragment) coin, γ (fragment) coin, half-lives by delayed timing method using EUROGAM2 and Gammasphere arrays for prompt γ rays from ²⁴⁸Cm SF decay. Delayed γ rays following induced fission of ²³⁵U and ²⁴²Am were measured using the Lohengrin mass spectrometer at the ILL reactor in Grenoble. Comparisons with quasiparticle rotor model and deformed model calculations. The 42.8 and 92.2 levels and associated γ rays are from delayed γ -ray study in 235 U(n,F). The prompt 108-115-263-404-474-535-565 γ cascade is from 248 Cm SF decay. Level scheme is established through double gating of γ rays in the cascade. ### ¹⁴⁴Cs Levels | E(level) [†] | J^π | T _{1/2} | Comments | | | | | |---|--|------------------|--|--|--|--|--| | 0.0 [‡]
42.8 [‡] 3 | (1 ⁻)
(2 ⁻) | | | | | | | | 92.2 [‡] 5 | (4-) | 1.1 μs <i>1</i> | $T_{1/2}$: from 2009Rz02, measurement of delayed γ rays from fission of 242 Am by neutrons at Lohengrin facility. | | | | | | 0+x [#] | J | | E(level): this level may be the same as 92.2, (4 ⁻), in which case x=92.2 Quasiparticle-rotor model calculations (see figure 13 in 2009Rz02) suggest a low-lying 4 ⁻ with configuration= $\pi(3/2[411]+3/2[422])\otimes \nu(3/2[523]+3/2[521])$, $K^{\pi}=3^{-}$. This configuration also reproduces a 5 ⁻ state at 200 keV and 6 ⁻ just above this energy. | | | | | | 107.9+x [#] 6 | J+1 | ≤8 ns | E(level): 200.1 if x=92.2. J^{π} : possible (5 ⁻) from model calculations. $T_{1/2}$: from 2009Rz02, time spectra for 107.9 γ and 404.7 γ from ²⁴⁸ Cm SF decay. Presence of a nanosecond isomer is also confirmed in measurement of delayed γ rays following ²³⁵ U(n,F) at Lohengrin facility, and from ionic charge distribution measured in the decay of ¹⁴⁴ Cs (2009Rz02). | | | | | | 222.5+x ^{#@} 6 | J+2 | | E(level): 314.7 if x=92.2. J^{π} : possible (6 ⁻) bandhead of configuration= $\pi d_{5/2} v f_{7/2}$. | | | | | | 485.8+x ^{#@} 7 | J+4 | | E(level): 578.0 if $x=92.2$.
J^{π} : possible (8 ⁻) band member. | | | | | | 890.5+x ^{#@} 8 | J+6 | | E(level): 982.7 if $x=92.2$.
J^{π} : possible (10 ⁻) band member. | | | | | | 1364.3+x ^{#@} 8 | | | E(level): 1456.5 if $x=92.2$. | | | | | | 1899.4+x ^{#@} 9 | | | E(level): 1991.6 if x=92.2. Level not included in Adopted Levels since 535γ is placed from $1426.0+x$ level, as in 252 Cf SF decay. | | | | | | 2464.4+x? ^{#@} 9 | | | E(level): not included in the Adopted Levels due to tentative nature of 565γ . E(level): 2556.6 if $x=92.2$. | | | | | [†] From Ey's, assuming $\Delta(E\gamma)=0.3$ keV (evaluator). [‡] Possible member of $\pi 3/2[422] \otimes \nu 5/2[523]$ multiplet. Level observed in ²³⁵U(n,F). [#] Level observed in prompt γ study of ²⁴⁸Cm SF decay. [@] Band(A): Band based on (6⁻) (?). #### ²⁴⁸Cm SF decay 2009Rz02 (continued) ## $\gamma(^{144}\mathrm{Cs})$ | Εγ | I_{γ} | $E_i(level)$ | \mathbf{J}_i^{π} | E_f | \mathbf{J}_f^{π} | Mult. | α & | Comments | |-----------------------------|--------------|--------------|----------------------|----------|----------------------|----------------|----------------|--| | 42.8 [†] | | 42.8 | (2-) | 0.0 | (1-) | (M1+E2) | 27 17 | $\alpha(K)$ =8.91 14 ; $\alpha(L)$ =14 13 ; $\alpha(M)$ =3 3 ; $\alpha(N+)$ =0.7 7 $\alpha(N)$ =0.6 6 ; $\alpha(O)$ =0.07 7 ; $\alpha(P)$ =0.00031 5 Mult.: M1 or E2 from I(x ray)/I $\gamma \approx 7$, when gated on L-conversion line of 49-keV transition, but pure E2 assignment is excluded from intensity balance considerations, thus M1+E2 is most likely. | | 49.4 [†] | | 92.2 | (4-) | 42.8 | (2-) | (E2) | 24.7 | $\alpha(L)$ exp=10 4 (2009Rz02)
$\alpha(K)$ =7.47 11; $\alpha(L)$ =13.57 19; $\alpha(M)$ =2.97 5;
$\alpha(N+)$ =0.664 10
$\alpha(N)$ =0.597 9; $\alpha(O)$ =0.0673 10; $\alpha(P)$ =0.000205 3 | | 107.9 [‡] | 100 5 | 107.9+x | J+1 | 0+x | J | (M1+E2)# | 1.1 4 | $\alpha(K)$ =0.79 17; $\alpha(L)$ =0.23 15; $\alpha(M)$ =0.05 4;
$\alpha(N+)$ =0.011 7
$\alpha(N)$ =0.010 7; $\alpha(O)$ =0.0012 8; $\alpha(P)$ =2.57×10 ⁻⁵ 13 | | 114.6 [‡] | 99 6 | 222.5+x | J+2 | 107.9+x | J+1 | (M1+E2)# | 0.9 3 | $\alpha(K)$ =0.66 14; $\alpha(L)$ =0.18 11; $\alpha(M)$ =0.038 24; $\alpha(N+)$ =0.009 6 $\alpha(N)$ =0.008 5; $\alpha(O)$ =0.0010 6; $\alpha(P)$ =2.16×10 ⁻⁵ 10 | | 263.3 [‡] | 48 <i>4</i> | 485.8+x | J+4 | 222.5+x | J+2 | Q [@] | | <i>u</i> (1)-0.000 <i>J</i> , <i>u</i> (<i>J</i>)-0.0010 <i>J</i> , <i>u</i> (1)-2.10×10 10 | | 404.7 [‡] | 39 <i>3</i> | 890.5+x | J+6 | 485.8+x | | Q [®] | | | | 473.8 [‡] | 35 4 | 1364.3+x | | 890.5+x | | • | | | | 535.1 [‡] | 12 2 | 1899.4+x | | 1364.3+x | | | | | | 565.0 [‡] <i>a</i> | 5 1 | 2464.4+x? | | 1899.4+x | | | | E_{γ} : not included in the Adopted Gammas due to its tentative nature. | $^{^{\}dagger}$ From delayed γ -ray study in 235 U(n,F). ‡ From prompt γ study in 248 Cm SF decay. Identification of γ rays in 144 Cs is based on coincidence with known γ rays from complementary fission fragments of 101 Nb and 103 Nb. [#] $\Delta J=1$, D+Q transition from $(114.6\gamma)(107.9\gamma)(\theta)$; intensity balance supports M1+E2. [@] $\Delta J=2$, Q transition from $(404.7\gamma)(263.3\gamma)(\theta)$. [&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ^a Placement of transition in the level scheme is uncertain. # ²⁴⁸Cm SF decay 2009Rz02 Band(A): Band based on (6^-) (?)