⁴³ Dy ε decay	(5.6 s)	2003Xu04
--------------------------	---------	----------

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	E. Browne, J. K. Tuli	NDS 113, 715 (2012)	31-May-2011		

Parent: ¹⁴³Dy: E=0.0; $J^{\pi} = (1/2^+)$; $T_{1/2} = 5.6$ s *10*; $Q(\varepsilon) = 8250$ *50*; $\%\varepsilon + \%\beta^+$ decay=100.0

¹⁴³Dy- $\%\epsilon$ + $\%\beta^+$ decay: Decays by delayed protons also, but $\%\epsilon$ p is unknown. ¹⁴³Dy isotope produced by ¹⁰⁶Cd(⁴⁰Ca,2pn) at E= 182 MeV at target center. Measured E γ , I γ , $\gamma\gamma$, X γ , delayed protons,

 $(\text{proton})\gamma$ coin, half-life using a tape-transport system, two coaxial HPGe detectors and an HPGe planar detector. For protons two Si detectors were used. Other: 2006Xu03.

¹⁴³Tb Levels

Many high-lying states are populated in ¹⁴²Gd through delayed proton decay.

E(level)	Comments					
0+x?	J^{π} : (5/2 ⁺) from systematics (1997Au04).					
		γ ⁽¹⁴³ Tb)				

Eγ	Iγ	E _i (level)	Comments
^x 113.7 [‡] 3	34 8		
^x 177.4 3	62 7		In coin with 577.9γ , 583.7γ .
^x 253.3 [#] 3	220 25		In coin with 113.7γ , 428.2γ , 440.3γ , 533.3γ .
^x 428.2 [‡] 4	46 9		
^x 440.3 [‡] 4	56 11		
^x 533.5 ^{‡#} 4	23 7		
^x 577.9 [†] 4	36 9		
^x 583.7 [†] 4	100 14		

[†] In coincidence with 177.4 γ .

[‡] In coincidence with 253.3γ .

253.3-533.5 cascade could possibly depopulate a $13/2^-$ state at 788 keV in ¹⁴³Tb known from in-beam γ ray studies.

 $x \gamma$ ray not placed in level scheme.