¹⁴³Ce β⁻ decay 1989Ku13

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 113, 715 (2012)	31-May-2011

Parent: ¹⁴³Ce: E=0.0; $J^{\pi}=3/2^-$; $T_{1/2}=33.039$ h 6; $Q(\beta^-)=1461.9$ 18; $\%\beta^-$ decay=100.0

Measured: γ rays (1989Ku13,1982Ge03,1975Da20,1971Lu05); $\gamma\gamma$ coincidence (1975Da20,1971Lu05,1968Gr19); $\gamma\gamma(\theta)$ (1975Ch31,1974Ve07,1966Su06); $\beta\gamma$ (1977Ra18,1968Me01,1956Ma16); shape of β^- (1977Ra18,1984Ve12); ce (1967Ba23); $\beta\gamma(\theta)$ (1968Ra31,1970Ra36); $\beta\gamma(\theta,H)$ (1966Zm01,1964Ko15); $\gamma\gamma(\theta,H)$ (1974Ve07), $\gamma\gamma(\theta,H,t)$ (1977Ne12). Others: 1966Ba17, 1966Ar14, 1965Ma43, 1964Si24, 1966Go20, 1963Ra07, 1963Gr38, 1983Ve11.

Measured: $E\beta^-=540\ 30,\ 738\ 13,\ 950\ 30,\ 1100\ 25\ \beta\gamma\ (1968Me01);\ 1110\ 2\ (statistical shape)\ \beta\gamma\ (1977Ra18,1984Ve12).$ Others: $\approx 200\ (6\%),\ 500\ 30\ (12\%),\ 740\ 150\ (5\%),\ 1125\ 20\ (40\%),\ 1400\ 20\ (37\%)\ (1956Ma16);\ see\ also\ 1952Ko27.$

 β^{-} feeding was determined from balance of I γ for each level and I(293 γ)=42.8% 4 (1982Ge03).

¹⁴³Pr Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	7/2+	13.57 d 2	$\sqrt[\infty]{\beta^{-}=100}$
57.356 7	5/2+	4.14 ns 5	T _{1/2} : weighted average: 4.20 ns 7 (1963Bo22), 4.17 ns 9 (1963Gr38), 4.16 ns 7 (1965Na06), 4.05 ns <i>12</i> (1969MuZO). Additional information 1.
350.622 4	$3/2^{+}$	59 ps 10	$T_{1/2}$: average: 49 ps 7 (1966Go20), 68 ps 8 (1969MuZO).
490.362 7	7/2+		
614.22 2	$5/2^+, 7/2^+$		
721.923 <i>1</i>	$5/2^{+}$		
740.26 2	$1/2^{+}$		
787.33 9			
848.42 2			
937.82 <i>1</i>	$3/2^+, 5/2^+$		
1014.3 <i>1</i>			
1060.21 2	5/2+		
1156.94 2	$1/2^+, 3/2^+$		
1160.58 2	$(3/2)^+$		
1381.84 <i>3</i>	$5/2^+, 3/2^+$		
1397.40 4	3/2+,5/2+		

[†] Adopted values.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(64.5 18)	1397.40	0.017 1	6.6	av E β =16.6 5
(80.1 18)	1381.84	0.034 2	6.6	av $E\beta = 20.85$
(301.3 18)	1160.58	0.46 1	7.3	av $E\beta = 85.8 6$
(305.0 18)	1156.94	0.036 2	8.4	av $E\beta = 86.9 \ 6$
(401.7 18)	1060.21	0.16 1	8.1	av $E\beta = 118.5 6$
(447.6 18)	1014.3	0.0043 8	9.8^{1u}	av Eβ=149.7 7
(524.1 18)	937.82	1.37 2	7.6	av $E\beta = 160.7 7$
(613.5 18)	848.42	0.058 3	9.2	av E β =192.8 7
(721.6 18)	740.26	0.037 3	9.6	av $E\beta = 233.17$
738 13	721.923	13.4 2	7.1	av $E\beta = 240.0 7$
(847.7 18)	614.22	0.026 4	10.0	av $E\beta = 281.67$
950 30	490.362	0.10 6	10.2^{1u}	av E β =341.8 7
1110 2	350.622	48.2 5	7.2	av E β =387.4 8
				E(decay): from 1977Ra18.

Continued on next page (footnotes at end of table)

¹⁴³ Ce β^- decay 1989Ku13 (continued)

 β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments				
1400 20	57.356	35 <i>3</i>	7.7	av Eβ=510.5 8				
1461.4 18	0.0	≤0.2	$\geq 10.8^{1u}$	av Eβ=538.11 75				

 † Absolute intensity per 100 decays.

 $\gamma(^{143}\mathrm{Pr})$

Iγ normalization: I(293γ)=42.8% 4 (1982Ge03).

 $\boldsymbol{\omega}$

E_{γ}	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	$\delta^{\#}$	α^{\dagger}	Comments
57.356 7	27.4 8	57.356	5/2+	0.0	7/2+	M1+E2	+0.039 8	6.47	α(K)=5.48 8; α(L)=0.777 13; α(M)=0.164 3;
122.4 <i>I</i>	0.020 7	1060.21	5/2+	937.82	3/2+,5/2+	E2		1.033	$\alpha(K)=0.663 \ 10; \ \alpha(L)=0.289 \ 5; \ \alpha(M)=0.0648 \ 10; \ \alpha(N+)=0.01607 \ 24 \ \alpha(N)=0.01405 \ 21; \ \alpha(O)=0.00198 \ 3; \ \alpha(P)=3.61\times10^{-5} \ 6$
139.742 17	0.18 1	490.362	7/2+	350.622	3/2+	E2		0.649	Mult.: K/L=2.14 <i>10</i> (196/Ba23,19/1Ba40). α (K)=0.441 7; α (L)=0.1634 23; α (M)=0.0365 6; α (N+)=0.00907 <i>13</i> α (N)=0.00791 <i>11</i> ; α (O)=0.001128 <i>16</i> ; α (P)=2.47×10 ⁻⁵ 4
197.6 2 231.550 2	0.006 <i>3</i> 4.8 <i>1</i>	937.82 721.923	3/2 ⁺ ,5/2 ⁺ 5/2 ⁺	740.26 490.362	1/2 ⁺ 7/2 ⁺	E2(+M1)		0.121 5	Mult.: K/L=2.45 <i>12</i> (1967Ba23), K/L=2.7 (theory,E2). α (K)=0.098 <i>9</i> ; α (L)=0.018 <i>4</i> ; α (M)=0.0038 <i>8</i> ; α (N+)=0.00098 <i>19</i> α (N)=0.00085 <i>17</i> ; α (O)=0.000130 <i>20</i> ; α (P)=6.9×10 ⁻⁶ <i>13</i>
272.9 2	< 0.02	1060.21	5/2+	787.33					Mult.: α (K)exp=0.085 <i>13</i> , α (K)=0.1083 (M1), α (K)=0.0900 (E2).
293.266 2 338 3 2	0 002 1	350.622	3/2 ⁺	57.356 721 923	5/2 ⁺	M1+E2	+0.77 10	0.0620 12	α(K)=0.0518 12; α(L)=0.00806 14; α(M)=0.00172 3; α(N+)=0.000445 8 α(N)=0.000382 7; α(O)=5.98×10-5 9; α(P)=3.76×10-6 11 Additional information 3. Iγ: 42.8% 4 (1982Ge03). Others: 42.6% (1957Ma16), 41.3% (1971Lu05). Mult.: K/L=6.04 13, L1:L2:L3=1000:177 10:14 6 (1968Ge02), α(K)exp=0.053 4 (1989Ku13). δ: from L1:L2:L3 (1968Ge02), sign from γγ(θ) (1975Ch31). Others: 1974Ve07, 1966Su06.
350.619 3	7.55 6	350.622	3/2+	0.0	7/2+	E2		0.0312	$\alpha(K)=0.0253$ 4; $\alpha(L)=0.00467$ 7; $\alpha(M)=0.001008$ 15;

 $^{143}_{59}\mathrm{Pr}_{84}\text{-}3$

 $^{143}_{59}\mathrm{Pr}_{84}$ -3

					¹⁴³ Ce	e β^- decay	1989Ku13 (continued)
						γ ⁽¹⁴³ P	r) (continued)	
Eγ	Ι _γ @	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments
257.0.2	0.0014.5	040.42		100.262	7.01			α (N+)=0.000258 4 α (N)=0.000222 4; α (O)=3.38×10 ⁻⁵ 5; α (P)=1.691×10 ⁻⁶ 24 Additional information 4. Mult.: α (K)exp=0.025 2 (1989Ku13).
357.82 371.29 <i>3</i>	0.0014 5 0.058 6	848.42 721.923	5/2+	490.362 350.622	7/2+ 3/2+	M1	0.0360	$\alpha(K)=0.0308\ 5;\ \alpha(L)=0.00411\ 6;\ \alpha(M)=0.000865\ 13;$ $\alpha(N+)=0.000227\ 4$ $\alpha(N)=0.000103\ 2;\ \alpha(O)=2.12\times10^{-5}\ 5;\ \alpha(D)=2.22\times10^{-6}\ 4$
389.64 2	0.085 4	740.26	1/2+	350.622	3/2+	M1	0.0318	$\alpha(N)=0.000195 3; \alpha(O)=5.12 \times 10^{-5} 3; \alpha(P)=2.33 \times 10^{-4} 4$ Mult.: $\alpha(K)$ exp=0.041 6. $\alpha(K)=0.0272 4; \alpha(L)=0.00363 5; \alpha(M)=0.000762 11;$ $\alpha(N+)=0.000200 3$
416 57 10	0.016.2	1156.04	1/24 2/24	5 40.26	1/2			α (N)=0.0001705 24; α (O)=2.75×10 ⁻⁵ 4; α (P)=2.06×10 ⁻⁶ 3 Mult.: α (K)exp≥0.008 2.
416.57 10 432.999 6	0.016 3 0.371 7	490.362	1/2*,3/2* 7/2*	740.26 57.356	1/2* 5/2+	M1	0.0243	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.0208 \ 3; \ \alpha(\mathrm{L}) = 0.00276 \ 4; \ \alpha(\mathrm{M}) = 0.000580 \ 9; \\ &\alpha(\mathrm{N}+) = 0.0001523 \ 22 \\ &\alpha(\mathrm{N}) = 0.0001298 \ 19; \ \alpha(\mathrm{O}) = 2.10 \times 10^{-5} \ 3; \ \alpha(\mathrm{P}) = 1.569 \times 10^{-6} \ 22 \end{aligned} $
438 43 8	0.010.2	1160 58	$(3/2)^+$	721 923	5/2+			$\alpha(K)=0.02105$ Mult.: $\alpha(K)\exp=0.022$ 4.
446.02 9	0.035 7	1060.21	5/2 ⁺	614.22	5/2 ⁺ ,7/2 ⁺	M1,E2	0.019 4	$\alpha(K)=0.016\ 4;\ \alpha(L)=0.00234\ 22;\ \alpha(M)=0.00050\ 5;$ $\alpha(N+)=0.000129\ 12$ $\alpha(N)=0\ 000110\ 10;\ \alpha(Q)=1\ 75\times10^{-5}\ 20;\ \alpha(P)=1\ 2\times10^{-6}\ 3$
447.45 2	0.140 6	937.82	3/2+,5/2+	490.362	7/2+	[E2]	0.01532	Mult.: $\alpha(K)$ =0.0105 10, $\alpha(C)$ =1.75×10 20, $\alpha(1)$ =1.2×10 5 Mult.: $\alpha(K)$ =0.017 5 (for 446.02 γ +447.45 γ). $\alpha(K)$ =0.01264 18; $\alpha(L)$ =0.00211 3; $\alpha(M)$ =0.000451 7; $\alpha(N+)$ =0.0001160 17
								α (N)=9.98×10 ⁻⁵ <i>14</i> ; α (O)=1.541×10 ⁻⁵ <i>22</i> ; α (P)=8.70×10 ⁻⁷ <i>13</i> Mult.: M1,E2 from α (K)exp=0.017 <i>5</i> (for 446.02 γ +447.45 γ). E2 from ΔJ^{π} .
490.368 5	5.05 5	490.362	7/2+	0.0	7/2+	M1	0.01771	$\alpha(K)=0.01517\ 22;\ \alpha(L)=0.00201\ 3;\ \alpha(M)=0.000422\ 6;\ \alpha(N+)=0.0001107\ 16$ $\alpha(N)=9.43\times10^{-5}\ 14;\ \alpha(O)=1.524\times10^{-5}\ 22;\ \alpha(P)=1.144\times10^{-6}\ 16$ $\alpha(K)=0.01538$ Multi- $\alpha(K)=0.015\ 2$
497.81 2 523.0 5	0.104 <i>6</i> 0.004 <i>1</i>	848.42 1014.3		350.622 490.362	3/2 ⁺ 7/2 ⁺			Mult.: $\alpha(K) \exp = 0.015 2$.
556.87 1	0.074 4	614.22	5/2+,7/2+	57.356	5/2+	E2+(M1)	0.0107 23	$\alpha(\mathbf{K})=0.0091 \ 20; \ \alpha(\mathbf{L})=0.00128 \ 19; \ \alpha(\mathbf{M})=0.00027 \ 4; \\ \alpha(\mathbf{N}+)=7.0\times10^{-5} \ 10 \\ \alpha(\mathbf{N})=6.0\times10^{-5} \ 9; \ \alpha(\mathbf{O})=9.6\times10^{-6} \ 15; \ \alpha(\mathbf{P})=6.6\times10^{-7} \ 17 $
569.91 9	0.012 4	1060.21	5/2+	490.362	7/2+			Mult.: $\alpha(K) \exp[=0.007 \ 4, \ \alpha(K)=0.01122 \ (M1), \ \alpha(K)=0.00708 \ (E2).$
587.20 2	0.623 6	937.82	3/2+,5/2+	350.622	3/2+	M1	0.01130	$\alpha(K)=0.00969 \ 14; \ \alpha(L)=0.001275 \ 18; \ \alpha(M)=0.000268 \ 4;$

4

 $^{143}_{59}\mathrm{Pr}_{84}\text{-}4$

					¹⁴³ Ce β ⁻	decay 19	89Ku13 (conti	inued)
						$\gamma(^{143}\text{Pr})$ (c	ontinued)	
E_{γ}	$I_{\gamma}^{@}$	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	α^{\dagger}	Comments
594.5 <i>4</i>	<0.005	1381.84	5/2+.3/2+	787.33				α (N+)=7.03×10 ⁻⁵ 10 α (N)=5.99×10 ⁻⁵ 9; α (O)=9.67×10 ⁻⁶ 14; α (P)=7.28×10 ⁻⁷ 11 Mult.: α (K)exp=0.010 1.
614.22 <i>3</i> 664.571 <i>15</i>	0.028 <i>3</i> 13.3 <i>1</i>	614.22 721.923	5/2 ⁺ ,7/2 ⁺ 5/2 ⁺	0.0 57.356	7/2 ⁺ 5/2 ⁺	M1+(E2)	0.0069 15	α =0.0069 <i>15</i> ; α (K)=0.0059 <i>13</i> ; α (L)=0.00080 <i>14</i> ; α (M)=0.00017 <i>3</i> ; α (N+)=4.4×10 ⁻⁵ <i>8</i> α (N)=3.8×10 ⁻⁵ <i>7</i> ; α (O)=6.0×10 ⁻⁶ <i>11</i> ; α (P)=4.3×10 ⁻⁷ <i>11</i> Mult.: α (K)exp=0.0065 <i>10</i> , α (K)=0.00726 (M1), α (K)=0.00456 (E2).
670.12 7 675.5 5 682.82 9 709.59 5	0.019 <i>4</i> 0.002 <i>1</i> 0.020 <i>4</i> 0.020 <i>3</i>	1160.58 1397.40 740.26 1060.21	$(3/2)^+$ $3/2^+, 5/2^+$ $1/2^+$ $5/2^+$	490.362 721.923 57.356 350.622	7/2 ⁺ 5/2 ⁺ 5/2 ⁺ 3/2 ⁺			
721.929 13	12.6 <i>I</i>	721.923	5/2+	0.0	7/2+	M1	0.00682 10	$\alpha = 0.00682 \ 10; \ \alpha(K) = 0.00585 \ 9; \ \alpha(L) = 0.000765 \ 11; \alpha(M) = 0.0001604 \ 23; \ \alpha(N+) = 4.21 \times 10^{-5} \ 6 \alpha(N) = 3.59 \times 10^{-5} \ 5; \ \alpha(O) = 5.80 \times 10^{-6} \ 9; \ \alpha(P) = 4.38 \times 10^{-7} \ 7 Mult.: \ \alpha(K) exp = 0.0071 \ 7.$
729.87 8 767.70 6 787.40 9 791.07 2	0.007 <i>1</i> 0.0074 <i>8</i> 0.006 <i>1</i> 0.031 <i>1</i>	787.33 1381.84 787.33 848.42	5/2+,3/2+	57.356 614.22 0.0 57.356	5/2 ⁺ 5/2 ⁺ ,7/2 ⁺ 7/2 ⁺ 5/2 ⁺			
806.34 2	0.067 2	1156.94	1/2+,3/2+	350.622	3/2+	M1+E2	0.0043 9	α =0.0043 9; α (K)=0.0037 8; α (L)=0.00050 9; α (M)=0.000104 $I8$; α (N+)=2.7×10 ⁻⁵ 5 α (N)=2.3×10 ⁻⁵ 4; α (O)=3.7×10 ⁻⁶ 7; α (P)=2.7×10 ⁻⁷ 7 Mult: α (K)exp=0.0044 6
809.98 2	0.073 2	1160.58	$(3/2)^+$	350.622	3/2+			$\mathbf{u}(\mathbf{r}) = \mathbf{u}(\mathbf{r}) \mathbf{u}($
880.46 1	2.41 2	937.82	3/2+,5/2+	57.356	5/2+	M1	0.00424 6	$\alpha = 0.00424 \ 6; \ \alpha(K) = 0.00364 \ 5; \ \alpha(L) = 0.000473 \ 7; \alpha(M) = 9.90 \times 10^{-5} \ 14; \ \alpha(N+) = 2.60 \times 10^{-5} \ 4 \alpha(N) = 2.22 \times 10^{-5} \ 4; \ \alpha(O) = 3.59 \times 10^{-6} \ 5; \ \alpha(P) = 2.72 \times 10^{-7} \ 4 Mult.: \ \alpha(K) exp = 0.0047 \ 4.$
891.47 7	0.019 2	1381.84	5/2+,3/2+	490.362	$7/2^+$			
907.17 937.827	0.003 <i>I</i> 0.061 <i>3</i>	1397.40 937.82	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺	490.362 0.0	7/2* 7/2+	E2	0.00244 4	α =0.00244 4; α (K)=0.00208 3; α (L)=0.000286 4; α (M)=6.01×10 ⁻⁵ 9; α (N+)=1.569×10 ⁻⁵ 22 α (N)=1.340×10 ⁻⁵ 19; α (O)=2.14×10 ⁻⁶ 3; α (P)=1.494×10 ⁻⁷ 21 Mult : α (K)eyn=0.0022 8
956.9 <i>1</i> 1002.85 <i>1</i>	0.003 <i>1</i> 0.176 <i>4</i>	1014.3 1060.21	5/2+	57.356 57.356	5/2 ⁺ 5/2 ⁺	M1	0.00312 5	$\alpha = 0.00312 \ 5; \ \alpha(K) = 0.00268 \ 4; \ \alpha(L) = 0.000347 \ 5; \alpha(M) = 7.26 \times 10^{-5} \ 11; \ \alpha(N+) = 1.91 \times 10^{-5} \ 3 \alpha(N) = 1.624 \times 10^{-5} \ 23; \ \alpha(O) = 2.63 \times 10^{-6} \ 4; \ \alpha(P) = 2.00 \times 10^{-7} \ 3$
1014.3 <i>3</i>	0.003 1	1014.3		0.0	7/2+			Mult.: α (K)exp=0.0028 6.
1014.3 3	0.003 1	1014.3		0.0	7/2+			

S

 $^{143}_{59}\mathrm{Pr}_{84}$ -5

 $^{143}_{59}\mathrm{Pr}_{84}$ -5

	$\frac{143}{\text{Ce}\beta^{-}\text{decay}} \qquad 1989\text{Ku13} \text{ (continued)}$											
γ ⁽¹⁴³ Pr) (continued)												
Eγ	Ι _γ @	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments				
1031.22 3	0.047 2	1381.84	5/2+,3/2+	350.622	3/2+	M1	0.00292 4	$\alpha = 0.00292 \ 4; \ \alpha(K) = 0.00251 \ 4; \ \alpha(L) = 0.000324 \ 5; \ \alpha(M) = 6.79 \times 10^{-5} \ 10; \\ \alpha(N+) = 1.785 \times 10^{-5} \ 25 \\ \alpha(N) = 1.520 \times 10^{-5} \ 22; \ \alpha(O) = 2.46 \times 10^{-6} \ 4; \ \alpha(P) = 1.87 \times 10^{-7} \ 3 \\ \text{Mult.:} \ \alpha(K) \exp = 0.0037 \ 12.$				
1046.78 <i>4</i>	0.028 2	1397.40	3/2+,5/2+	350.622	3/2+	M1	0.00282 4	$\alpha = 0.00282 \ 4; \ \alpha(K) = 0.00243 \ 4; \ \alpha(L) = 0.000313 \ 5; \ \alpha(M) = 6.56 \times 10^{-5} \ 10; \\ \alpha(N+) = 1.723 \times 10^{-5} \ 25 \\ \alpha(N) = 1.468 \times 10^{-5} \ 21; \ \alpha(O) = 2.38 \times 10^{-6} \ 4; \ \alpha(P) = 1.81 \times 10^{-7} \ 3 \\ \text{Mult:} \ \alpha(K) \exp = 0.0040 \ 15.$				
1060.22 2	0.085 <i>3</i>	1060.21	5/2+	0.0	7/2+	M1+(E2)	0.0023 5	$\alpha = 0.0023 \ 5; \ \alpha(K) = 0.0020 \ 4; \ \alpha(L) = 0.00026 \ 5; \ \alpha(M) = 5.5 \times 10^{-5} \ 10; \alpha(N+) = 1.43 \times 10^{-5} \ 25 \alpha(N) = 1.22 \times 10^{-5} \ 21; \ \alpha(O) = 2.0 \times 10^{-6} \ 4; \ \alpha(P) = 1.5 \times 10^{-7} \ 3 Mult.: \ \alpha(K) \exp = 0.0022 \ 6.$				
1103.25 2	0.97 1	1160.58	(3/2)+	57.356	5/2+	M1	0.00250 4	$\alpha = 0.00250 4; \alpha(K) = 0.00215 3; \alpha(L) = 0.000277 4; \alpha(M) = 5.79 \times 10^{-5} 9; \alpha(N+) = 1.563 \times 10^{-5} 22 \alpha(N) = 1.297 \times 10^{-5} 19; \alpha(O) = 2.10 \times 10^{-6} 3; \alpha(P) = 1.598 \times 10^{-7} 23; \alpha(PF) = 4.02 \times 10^{-7} 6$ Mult.: $\alpha(K) \exp = 0.0023 4.$				
1160.58 6	0.0056 7	1160.58	$(3/2)^+$	0.0	$7/2^{+}$							
1324.48 <i>3</i>	0.0037 1	1381.84	$5/2^+, 3/2^+$	57.356	5/2+							
1340.1 <i>1</i>	0.0072 3	1397.40	$3/2^+, 5/2^+$	57.356	5/2+							
1382 <i>I</i>	0.0009 <i>3</i>	1381.84	$5/2^+, 3/2^+$	0.0	$7/2^+$							

[†] Additional information 5. [‡] $\alpha(K)$ exp were normalized to $\alpha(K)(293\gamma)=0.0524$ (M1+E2 $\delta=0.77$ 10) with ce from 1971Ba40 and I γ from 1989Ku13; see also 1967Ba23. [#] Additional information 6. [@] For absolute intensity per 100 decays, multiply by 0.428 4.

L

 $L^{-78} J_{43} J_{571}^{65}$

 $\mathcal{L}^{-\frac{1}{7}8}\mathbf{J}\mathbf{d}_{571}^{65}$