143 Pm ε decay 1970Ch09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 113, 715 (2012)	31-May-2011

Parent: ¹⁴³Pm: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=265$ d 7; $Q(\varepsilon)=1041.3$ 28; $\%\varepsilon+\%\beta^+$ decay=100.0

Measured: γ rays (1971ScZU,1970Av03,1960Fu05), $\gamma\gamma\pm$ coin (1967Va01,1959Of12), γ K x ray coin (1984Se09,1970Ch09); γ(θ,t) (1969Ba33,1963Gr10).

εK(742)=0.81 2 (1984Se09). Other: 0.806 23 (1981BeYL).

 $\beta^+ / \varepsilon < 1.0 \times 10^{-6}$ (1967Va01). Other: 1959Of12.

Measured γ^{\pm} , determined $\%\beta^+ < 5.7 \times 10^{-6}$ (1994Hi05).

143Nd Levels

E(level)	$J^{\pi \dagger}$
0.0	7/2-
741.98 4	$3/2^{-}$

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(299 3)	741.98	38.7 25	7.4	ε K=0.8109 5; ε L=0.1459 4; ε M+=0.04312 12
(1041 3)	0.0	61.3 25	8.4	ε K=0.8396; ε L=0.12453 3; ε M+=0.035824 8

[†] Absolute intensity per 100 decays.

$\gamma(^{143}\text{Nd})$

Iγ normalization: I(742γ)=38.5% 24 (1970Ch09).

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
741.98 4	100	741.98	3/2-	0.0 7/2-	E2	0.00436 7	$ \begin{array}{l} \alpha = 0.00436 \ 7; \ \alpha(\text{K}) = 0.00368 \ 6; \ \alpha(\text{L}) = 0.000537 \ 8; \\ \alpha(\text{M}) = 0.0001144 \ 16; \ \alpha(\text{N}+) = 2.95 \times 10^{-5} \ 5 \\ \alpha(\text{N}) = 2.55 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.79 \times 10^{-6} \ 6; \ \alpha(\text{P}) = 2.21 \times 10^{-7} \ 3 \\ \text{E}_{\gamma}: \ \text{from 1971ScZU. Others: } 742.9 \ 2 \ (1970\text{Av03}), \ 741.8 \ 15 \\ (1960\text{Fu05}). \\ \text{Mult.: } \ \alpha(\text{K}) \text{exp} = 0.0035 \ 4 \ (1970\text{Av03}). \ \text{Other: } (1968\text{Be39}). \end{array} $

[†] Additional information 1. [‡] For absolute intensity per 100 decays, multiply by 0.385 24.

¹⁴³Pm ε decay 1970Ch09

Decay Scheme

Intensities: I_{γ} per 100 parent decays

