¹⁴²Nd(α ,³He) **2008Ka01**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	E. Browne, J. K. Tuli	NDS 113, 715 (2012)	31-May-2011		

E=51 MeV beam from the Yale tandem accelerator. The reaction products were analyzed with an Enge magnetic split-pole spectrometer. The ³He ions were isolated by a gas-filled ionization chamber and a plastic scintillator at the focal plane of the Enge spectrometer and using E- Δ E technique. Angular distributions were measured at 6°, 11° and 20°. Energy resolution (FWHM)=70 keV. DWBA analysis.

Absolute cross sections have a typical uncertainty of $\approx 7\%$, whereas relative values are accurate to 5%. Additional information 1.

143Nd Levels

$$\label{eq:sigma_linear} \begin{split} \Sigma[C^2S]: \ 1.12 \ {\it l6} \ {\rm for} \ h_{9/2}, \ 0.87 \ {\it l2} \ {\rm for} \ i_{13/2}. \\ {\rm Centroid \ energy} \ (keV): \ 1493 \ 5 \ {\rm for} \ h_{9/2}, \ 1627 \ {\it 31} \ {\rm for} \ i_{13/2}. \end{split}$$

E(level) [†]	J^{π}	L	C^2S^{\ddagger}	Comments
1228.04 8	$13/2^{+}$	6	0.65	$d\sigma/d\Omega$ (mb/sr)=2.68 at 6°, 2.06 at 11°, 1.19 at 20°.
1407.08 6	9/2-	5	0.83	$d\sigma/d\Omega$ (mb/sr)=1.11 at 6°, 0.76 at 11°, 0.54 at 20°.
1739.21 8	9/2-	5	0.29	$d\sigma/d\Omega$ (mb/sr)=0.34 at 6°, 0.22 at 11°, 0.16 at 20°.
2805.3 <i>3</i>	$13/2^{+}$	6	0.22	$d\sigma/d\Omega$ (mb/sr)=0.26 at 20°.

[†] From Adopted Levels.

[‡] Typical uncertainties are 10% based on relative cross sections and analysis using a variety of optical parameters listed in 2008Ka01.