¹¹⁰Pd(³⁷Cl,4nγ):SD 1999Ax02,1993At01,1991Mu08

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. Browne, J. K. Tuli	NDS 113, 715 (2012)	31-May-2011					

Additional information 1.

2001Sh11: Theoretical study of decay-out spin of Super Deformed (SD) bands.

1998Ca19 (also 2000Br50,1999Ca02), 1998Ca36, 1997Le26, 1997Ca27, 2001Ca15, 2001Br16, 2001Br09, 2000Br50, 1999Ca22, 1999Ax02, 1998Br38, 1997Br41, 1996Ma34: study Giant Dipole Resonance (GDR) built on superdeformed state using ¹¹⁰Pd(³⁷Cl.4nγ).

1997Le17, 1996Le07: decay of yrast SDB was studied. Only single-step 3361γ deexciting the second-lowest SDB state to a level above $35/2^{(+)}$, 4947 level, seen in 1996At03 is confirmed in 1997Le17. No two-step links were evident (1997Le17).

2004Mi21, 2002Be61, 1999Ax02, 1995Fo02, 1993At01 (also 1996Le07, 1995Le31, 1993At02, 1993At03), 1991Mu08: ¹¹⁰Pd(³⁷Cl,4n γ) E=160 MeV. Measured $\gamma\gamma$, $\gamma\gamma(\theta)$. From a fluctuation-analysis method, 1995Le31 report evidence for 10 to 40 superdeformed bands (without discrete transitions) in ¹⁴³Eu within a narrow transition range of 1300-1500 keV. Continuum spectroscopy results given by 1996Le07. Others: 2001Ca40, 2001Km02. Lifetime data are given in 1995Fo02 (centroid-shift analysis) and 1993At03.

1995Mu11: 122 Sn(27 Al,6n γ). Percent population of SD band=1.0.

2000Li14: ⁹⁷Mo($\tilde{51}$ V,2p3n γ) E=238 MeV. Measured E γ , I γ , $\gamma\gamma$. Deduced yrast band. E γ and I γ for 15 transitions (547 to 1385) reported.

¹⁴³Eu Levels

E(level)	\mathbf{J}^{π}	Comments
x†	J≈(33/2)	 E(level): x=8582 4 (1993At01) deduced from possible deexciting transitions to normal bands. J^π: from 1999Ax02, who adopted the assignment in 1997Lu03 based on comparison of experimental moments of inertia with those from model calculations. Assignment of (37/2) by 1993At01 was based on deexcitation of SD band. Possible deexcitation to 4656 (33/2) and 4949 (35/2) levels through cascades of two γ rays summing to 3925 5 and 3634 5, respectively (1993At01). A single-step transition of 2418.9 9 is tentatively assigned (1996At03) to the decay of SD band, but its placement is uncertain. A 2715 transition is also reported by 1999Ax02 in coincidence with transitions in SD-1 band, but its exact placement is not known.
483.28+x [†] 10	J+2	Possible deexcitation to 5590 (37/2), 5795 (35/2), 5851 (39/2) and 5872 levels through cascades of two γ rays summing to 3476 5, 3274 5, 3211 5 and 3187 5, respectively, was suggested by 1993At01. 1996At03 found, and 1997Le17 confirmed, a 3360.6 transition to deexcite this level and feed a normal level that decays to a level above 4947, $35/2^+$.
1029.64+x [†] 15	J+4	Possible deexcitation to 6336 (39/2) level through a cascade of two γ rays summing to 3274 5 (1993At01).
1638.49+x [†] 18	J+6	
2309.63+x [†] 20	J+8	
3042.06+x [†] 23	J+10	
3835.19+x [†] 25	J+12	
4688.5+x [†] 3	J+14	
5601.4+x [†] 4	J+16	
6573.7+x [†] 4	J+18	
7604.9+x [†] 4	J+20	
8694.8+x [†] 5	J+22	
9843.5+x [†] 5	J+24	
11050.7+x [†] 6	J+26	
12316.4+x [†] 6	J+28	

²⁰⁰¹Le04: Studied ridge structures in $\gamma\gamma$ matrices using Euroball array.

Other: 1998MaZQ.

¹¹⁰Pd(³⁷Cl,4nγ):SD 1999Ax02,1993At01,1991Mu08 (continued)

¹⁴³ Eu Levels (continued)							
E(level)	J^{π}	Comments					
13640.9+x [†] 6	J+30						
15023.6+x [†] 7	J+32						
16466.7+x [†] 7	J+34						
17969.8+x [†] 7	J+36						
19533.1+x [†] 8	J+38						
21157.1+x [†] <i>13</i>	J+40						
22841.8+x [†] 16	J+42						
24588.1+x [†] 20	J+44						
26392.9+x [†] 24	J+46						
у‡	J1≈(61/2)	J^{π} : from 1999Ax02, based on 33/2 for the lowest level of SD-1 band.					
865.2+y [‡] 3	J1+2						
1789.0+y [‡] 4	J1+4						
2768.8+y [‡] 4	J1+6						
3805.0+y [‡] 5	J1+8						
4898.3+y [‡] 5	J1+10						
6048.9+y [‡] 6	J1+12						
7257.2+y [‡] 6	J1+14						
8523.2+y [‡] 7	J1+16						
9847.4+y [‡] 7	J1+18						
11230.4+y [‡] 8	J1+20						
12672.3+y [‡] 9	J1+22						
14173.5+y [‡] 10	J1+24						
15734.5+y [‡] 10	J1+26						
17355.8+y [‡] 16	J1+28						
19040+y [‡] 3	J1+30						
20780+y [‡] 4	J1+32						

[†] Band(A): SD-1 band (1999Ax02,2000Li14,1993At01,1991Mu08). Q(intrinsic)=13.0 *15* (1995Fo02), 13 *I* (1993At01,1993At03). The lifetime details are given in 1995Fo02 and 1993At03. Percent population=1.1 (1993At01), 1.0 (1995Mu11), 1.8 (1999Ax02). β_2 =0.52 *5*, β_4 =0.05. Configuration=((ν 6)⁺⁴(π 6)⁺¹), involving i13/2 intruder orbitals from N=6 shell for both neutrons and protons (1995Fo02).

[±] Band(B): SD-2 band (1999Ax02). Percent population=35% 4 of SD-1 band (1999Ax02). Configuration= $(\pi \ 6)^2 (\nu \ 7)^0$ (1999Ax02).

$\gamma(^{143}{\rm Eu})$

 $F(\tau)$ given are the Doppler Shift attenuation factors (1995Fo02).

E_{γ}^{\dagger}	I _γ ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
483.28 10	0.32 2	483.28+x	J+2	Х	J≈(33/2)	
546.36 ^{&} 10	0.69 3	1029.64+x	J+4	483.28+x	J+2	$F(\tau)=0.22 \ 4 \ (1995Fo02).$
608.85 10	1.05 3	1638.49+x	J+6	1029.64+x	J+4	$F(\tau)=0.38 \ 3 \ (1995Fo02).$
671.14 ^{&} 10	0.96 4	2309.63+x	J+8	1638.49+x	J+6	$F(\tau)=0.50\ 2\ (1995Fo02).$

Continued on next page (footnotes at end of table)

¹¹⁰ Pd(³⁷ Cl,4n γ):SD	1999Ax02,1993At01,1991Mu08 (continued)
--	--

$\gamma(^{143}\text{Eu})$ (continued)

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Comments
732.42 10	0.99 3	3042.06+x	J+10	2309.63+x	J+8	$F(\tau)=0.66\ 2\ (1995Fo02).$
793.13 10	0.98 3	3835.19+x	J+12	3042.06+x	J+10	$F(\tau)=0.72\ 2\ (1995Fo02).$
853.30 10	1.01 4	4688.5+x	J+14	3835.19+x	J+12	$F(\tau)=0.78\ 2\ (1995Fo02).$
865.2 ^{&} 3	0.29 4	865.2+y	J1+2	у	J1≈(61/2)	
912.9 <mark>&</mark> 2	0.98 ^{#@} 8	5601.4+x	J+16	4688.5+x	J+14	$F(\tau)=0.85\ 2\ (1995Fo02).$
923.76 13	0.32 3	1789.0+y	J1+4	865.2+y	J1+2	
972.26 10	1.04 ^{#@} 8	6573.7+x	J+18	5601.4+x	J+16	$F(\tau)=0.86\ 2\ (1995Fo02).$
979.8 2	@	2768.8+y	J1+6	1789.0+y	J1+4	
1031.25 20	1.03 ^{#@} 7	7604.9+x	J+20	6573.7+x	J+18	$F(\tau)=0.89\ 2\ (1995Fo02).$
1036.27 22	@	3805.0+y	J1+8	2768.8+y	J1+6	
1089.93 20	0.95 ^{#@} 6	8694.8+x	J+22	7604.9+x	J+20	$F(\tau)=0.91\ 2\ (1995Fo02).$
1093.3 2	@	4898.3+y	J1+10	3805.0+y	J1+8	
1148.67 ^{&} 20	$0.75^{\#@}$ 11	9843.5+x	J+24	8694.8+x	J+22	$F(\tau)=0.93\ 2\ (1995Fo02).$
1150.6 ^{&} 2	@	6048.9+y	J1+12	4898.3+y	J1+10	
1207.13 20	0.81 4	11050.7+x	J+26	9843.5+x	J+24	$F(\tau)=0.94\ 2\ (1995Fo02).$
1208.3 <i>3</i>	0.32 3	7257.2+y	J1+14	6048.9+y	J1+12	
1265.69 20	0.66 <i>3</i>	12316.4+x	J+28	11050.7+x	J+26	$F(\tau)=0.96\ 2\ (1995Fo02).$
1266.0 2	0.29 3	8523.2+y	J1+16	7257.2+y	J1+14	
1324.2 <i>3</i>	0.21 3	9847.4+y	J1+18	8523.2+y	J1+16	
1324.52 21	0.56 <i>3</i>	13640.9+x	J+30	12316.4+x	J+28	$F(\tau)=0.97\ 2\ (1995Fo02).$
1382.70 21	0.43 <i>3</i>	15023.6+x	J+32	13640.9+x	J+30	$F(\tau)=0.97\ 2\ (1995Fo02).$
1383.0 <i>3</i>	0.16 3	11230.4+y	J1+20	9847.4+y	J1+18	
1441.9 <i>3</i>	0.14 3	12672.3+y	J1+22	11230.4+y	J1+20	
1443.12 <i>21</i>	0.33 3	16466.7+x	J+34	15023.6+x	J+32	$F(\tau)=1.00\ 2\ (1995Fo02).$
1501.2 4	0.07 2	14173.5+y	J1+24	12672.3+y	J1+22	
1503.03 21	0.32 3	17969.8+x	J+36	16466.7+x	J+34	$F(\tau)=1.01\ 2\ (1995Fo02).$
1561.0 4	0.06 2	15734.5+y	J1+26	14173.5+y	J1+24	
1563.3 2	0.17 2	19533.1+x	J+38	17969.8+x	J+36	
1621.3 <i>12</i>		17355.8+y	J1+28	15734.5+y	J1+26	
1624.0 10	0.09 2	21157.1+x	J+40	19533.1+x	J+38	
1684 2		19040+y	J1+30	17355.8+y	J1+28	
1684.7 10		22841.8+x	J+42	21157.1+x	J+40	
1740 2		20780+y	J1+32	19040+y	J1+30	
1746.3 12		24588.1+x	J+44	22841.8+x	J+42	
1804.8 12		26392.9+x	J+46	24588.1+x	J+44	

[†] From 1999Ax02. Evaluators combined in quadrature statistical and systematic uncertainties as quoted in 1999Ax02. For SD-1 band, the statistical uncertainties are typically 0.02-0.05 keV up to 1400 keV and up to 0.7 keV above this energy. For SD-1 band, independent $E\gamma$ are also available from 2000Li14 (from 547 to 1386), 1993At01 and 1991Mu08.

[‡] Read from a graph shown in 1999Ax02, unless otherwise stated. Intensities for selected transitions are also available from 2000Li14 and in a graphical format from 1993At01.

[#] From intensity plot given in 1993At01.

[@] Intensity shown in the plot in 1999Ax02 does not represent a true value due either to the use of this γ ray as a gating transition or to possible mixture of a close-lying contaminant.

 $^{\&}$ E γ has larger systematic uncertainty due to a close-lying contaminant.

¹¹⁰Pd(³⁷Cl,4nγ):SD 1999Ax02,1993At01,1991Mu08

 $^{143}_{63}\rm{Eu}_{80}$

¹¹⁰**Pd**(³⁷**Cl,4n** γ):**SD** 1999Ax02,1993At01,1991Mu08

			Band(B): S	D-2 ban	d (1999Ax02)
			J1+32		20780+y
			J1+30	1740	19040+y
			J1+28	1684	17355.8+y
			J1+26	1621	15734.5+y
			J1+24	1561	14173.5+y
			J1+22	1501	12672.3+y
			J1+20	1442	11230.4+y
Band(A): S 2000Li14,1	D-1 bar 993At0	nd (1999Ax02, 1,1991Mu08)	J1+18	1383	9847.4+y
J+46		26392.9+x	J1+16	1324	8523.2+y
J+44	1805	24588.1+x	J1+14	1266	7257.2+y
		210001111	J1+12	1208	6048.9+y
J+42	1746	22841.8+x	J1+10	1151	4898.3+y
T. 40	1685	01177.1.	J1+8	1093	3805.0+y
<u>J+40</u>	-	2115/.1+x	J1+6	1036	2768.8+y
J+38	1624	19533.1+x	J1+4	980	1789.0+y
	1563		J1+2	924	865.2+y
J+36	-	17969.8+x	J1~(61/2)	865	У
J+34	1503	16466.7+x			
J+32	1443	15023.6+x			
J+30	1383	13640.9+x			
J+28	1325	12316.4+x			
J+26	1266	11050.7+x			
J+24	1207	9843.5+x			
J+22	1149	8694.8+x			
J+20	1090	7604.9+x			
J+18	1031	6573.7+x			
J+16	972	5601.4+x			
J+14	913	4688.5+x			
J+12	853	3835.19+x			
J+10	793	3042.06+x			
J+0 I+6	732	-2009.03+X 1638.40+v			
J+0	671	-1030.49 + x -1029.64 + x			
J+2	609	-483.28+x			
J≈(33/2)	546 483	X			

¹⁴³₆₃Eu₈₀