History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	E. Browne, J. K. Tuli	NDS 113,715 (2012)	31-May-2011			

 $Q(\beta^{-})=1461.8 \ 19$; $S(n)=5144.80 \ 9$; $S(p)=8871 \ 6$; $Q(\alpha)=883 \ 3$ 2012Wa38 Note: Current evaluation has used the following Q record 1461.9 185144.80 9 8872 6 883.6 28 2011AuZZ. n-capture cross sections, resonance integrals: 1997Ka47, 1996Ka03, 1990Xi04. Calculated n-capture and n-fission cross sections: 2010Pr07.

Calculated levels energies, magnetic and quadrupole moments: 2007Ji14.

Measured U(n,f) and Th(n,f) cross sections (2010Ad13).

¹⁴³Ce Levels

Cross Reference (XREF) Flags

 143 La β^- decay A

¹⁴²Ce(n, γ) E=thermal В

¹⁴²Ce(d,p) С

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments		
0.0	3/2-	33.039 h 6	ABC	$\%\beta^{-}=100$		
				μ =0.43 <i>l</i> (2002Ta01,2011StZZ)		
				J^{π} : L=1 in (d,p), atomic beam (1976Fu06).		
				μ : Nuclear Magnetic Resonance on Oriented Nuclei (2002Ta01) Other: 1.0 3		
				(1963Ha07).		
				$T_{1/2}$: from 1989Ab18; others: 33.10 h 5 (1989Ku13), 33.0 h 2 (1972Em01).		
				Parent to IAS in 143 Pr (1972Le17).		
18.9 <i>1</i>	$7/2^{-}$		ABC	Parent to IAS in ¹⁴³ Pr (1972Le17).		
12.20.7	5/2-			J^{π} : L=3 in (d,p), analyzing power for IAS in (pol p,p') (1969Gr01).		
42.28 7	5/2		ABC	μ =1.0 3 (1963Ha07,2011StZZ)		
				J [*] : Strong γ rays from levels with $J^{n} = 9/2$, $3/2$; observed γ ray to g.s.		
				$(J^{n}=3/2)$ must be M1, 11 E2 it would have not been observed in the γ -ray		
				spectrum because of its much stronger electron methal conversion, and competition with the observed M1 α ray to a level with $I^{\pi} - 7/2^{-1}$		
				μ : Static Nuclear Orientation with γ -ray detection (1963Ha07)		
632.5.5	$(1/2^{-})$		Bc	J^{π} : L=(1) in (d.p).		
640.3 2	(1/=)		Ac	J^{π} : γ ray to $7/2^{-}$ suggests J>1/2.		
662.7 2	9/2-		AC	J^{π} : L=5 in (d,p), γ ray to 5/2 ⁻ .		
808.2 <i>3</i>	3/2-		ABc	J^{π} : γ ray to $7/2^{-}$, L=1 in (d,p), parent to IAS in ¹⁴³ Pr (1972Le17).		
817.0 2	- /		Ac			
862.1 <i>3</i>	$(1/2)^{-}$		BC	J^{π} : L=1 in (d,p), parent of (1/2) ⁻ IAS in ¹⁴³ Pr (1972Le17).		
1095.3 2			Α			
1116.8 <i>3</i>			Α			
1154.1 3	3/2-		BC	XREF: C(1162).		
				J^{π} : L=1 in (d,p), γ ray to 7/2 ⁻ .		
1165.0 <i>1</i>	(>3/2)		AB	J^{π} : strongest γ ray is to 7/2 ⁻ , γ ray to 3/2 ⁻ , and observed β feeding from 7/2 ⁺ suggest J>3/2.		
1167.6 2	(>3/2)		A	J^{π} : strongest γ ray is to 7/2 ⁻ , γ ray to 3/2 ⁻ , and observed β feeding from 7/2 ⁺ suggest J>3/2.		
1172.5 3	3/2-,(1/2)-		ABC	J^{π} : L=1 in (d,p), I γ to 3/2 ⁻ and 5/2 ⁻ are comparable, parent to IAS in ¹⁴³ Pr (1972Le17).		
1195 10	$(5/2)^{-}$		С	J^{π} : L=3 in (d,p); parent of (5/2) ⁻ IAS in ¹⁴³ Pr (1972Le17).		
1220.0 4	9/2-		AC	J^{π} : L=5 in (d,p), γ ray to 5/2 ⁻ .		
1298 5	$(5/2)^{-}$		С	J^{π} : L=3 in (d,p), parent of (5/2) ⁻ IAS in ¹⁴³ Pr (1972Le17).		
1506 10	5/2-,7/2-		С	J^{π} : L=3 in (d,p).		
1506 10	5/2-,7/2-		C	J^{n} : L=3 in (d,p).		

¹⁴³Ce Levels (continued)

E(level)	J^{π}	XREF	Comments
1542 10		С	
1558 10	$5/2^{-},7/2^{-}$	С	J^{π} : L=3 in (d,p).
1572.4 5	$1/2^{-}, 3/2^{-}$	BC	J^{π} : L=1 in (d,p).
1598.7 8		Α	
1620.5 4	$3/2,(1/2^{-})^{\dagger}$	В	J^{π} : strong γ ray to $5/2^{-}$.
1628.7 4	3/2,1/2 [†]	В	
1635 5	5/2-,7/2-	С	J^{π} : L=3 in (d,p).
1676.9 <i>3</i>		AC	
1714 10	5/2-,7/2-	C	J^{π} : L=3 in (d,p).
1726.7 2	1/2-2/2-	A	$I\pi$, I , I , I , (J, r)
1/39/10	1/2, $3/25/2^{-} 7/2^{-}$	C	$J^{n}: L=1 \text{ in } (d,p).$ $J^{\pi}: L=3 \text{ in } (d,p).$
1810 10	$\frac{3/2}{(1/2)^{-}}$	R	J. L=3 III (d,p). I^{π} : γ ray to $3/2^{-}$ no γ ray to $5/2^{+}$ I =1 in (d n)
1857.0.2	(1/2)	AC	$J : \gamma Hay to 3/2 , Ho \gamma Hay to 3/2 , L=1 III (d,p).$
1906.1.5	$(7/2)^{-}$	AC	XREF: C(1897).
			J^{π} : L=3 in (d,p); no γ ray to $3/2^{-}$.
1913.4 11	$(1/2)^{-}$	BC	XREF: C(1922).
			J ^{π} : γ ray to $\leq 3/2^{-}$, no γ ray to $\geq 5/2^{-}$; L=1 in (d,p).
1945.4 6	3/2-	BC	J^{π} : L=1 in (d,p), γ ray to 7/2 ⁻ .
1980.2 <i>I</i>		AC	
1989.5 4	(2/2) =	A	VDEE: C(200()
1995.5 0	(3/2)	BC	AREF: $C(2000)$. I^{π} : I = 1 in (d p): strong or row to $5/2^{-1}$
2027 4 8	$(1/2-)^{\dagger}$	DC	J : L=1 in (d,p), sublig p ray to 5/2 :
2027.4 8	$(1/2)^{+}$	ВС	$J : \gamma$ ray to $3/2$, no γ ray to $3/2$.
2040 10		AC	
2061.5.6	$3/2^{-1}$	R	I^{π} : I -1 in (d n): x ray to 7/2 ⁻
2065.3 7	5/2	AC	J : L = 1 m (u,p), y u y to 7/2 .
2112 10		C	
2143 10	$1/2^{-}, 3/2^{-}$	С	J^{π} : L=1 in (d,p).
2160 10	$1/2^{-}, 3/2^{-}$	С	J^{π} : L=1 in (d,p).
2202.0 6	1/2,3/2 [†]	В	
2215.9 6	$(3/2)^{-\dagger}$	BC	J^{π} : L=1 in (d,p); strong γ ray to 5/2 ⁻ .
2232.1 7	$(3/2)^{-\dagger}$	BC	J^{π} : L=1 in (d,p): strong γ ray to $5/2^{-}$.
2255 10	1/2-,3/2-	C	J^{π} : L=1 in (d,p).
2255.3 4		Α	J^{π} : γ ray to $9/2^{-}$ exclude $J \leq 3/2$.
2272.7? 10	$1/2^{-}, 3/2^{\dagger}$	В	J^{π} : strong γ ray to $5/2^{-}$.
2307.2 6	$(5/2^-, 7/2^-)$	Α	J^{π} : possible L=3 in (d,p).
2313.9 8	$3/2^{-}, 1/2^{-}$	BC	J^{π} : L=1 in (d,p);
2348 10		C	
2403.8 3	5 10- 7 10-	AC	
2481.3 5	5/2 ,1/2	AC	XREF: $C(2489)$.
2499 6 10	2/2 1/2		J : L=S III (d,p).
2488.0 10	5/2, 1/2	В	I^{π} , $I = 2$ in $(d n)$
2517.5 5	5/2 ,1/2	A C	J : L=S III (d,p).
2517.2 3	$(3/2 1/2)^{\dagger}$	R	
2552.10	(J/2, I/2)	Ċ	
2570.7 5		A	
2571 10	1/2-,3/2-	С	J^{π} : L=1 in (d,p).
2596 10		С	
2611 10		С	
2630 10		С	

Continued on next page (footnotes at end of table)

¹⁴³Ce Levels (continued)

E(level)	J^{π}	XREF	Comments
2643.7 2		AC	
2660 10		С	
2695 10		С	
2712 10		С	
2728.7 2		Α	
2742 10	$1/2^{-}, 3/2^{-}$	С	J^{π} : L=1 in (d,p).
2775 10		С	
2815.8 <i>3</i>		Α	
2825.1 <i>3</i>		Α	
(5144.80 9)	$1/2^{+}$	В	

[†] J=1/2 or 3/2 since level is fed by dipole primary γ ray from 1/2⁺ n-capture state.

$\gamma(^{143}\text{Ce})$

E γ , I γ are from β^- decay for transitions seen in β^- decay. Others are from (n,γ) .

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
42.28	5/2-	23.40 5		18.9	$7/2^{-}$
	,	42.28 7		0.0	$3/2^{-}$
632.5	$(1/2^{-})$	632.3 4	100	0.0	$3/2^{-}$
640.3		621.4 <i>1</i>	100	18.9	$7/2^{-}$
662.7	9/2-	620.3 1	100 5	42.28	$5/2^{-}$
		643.75 9	66 <i>3</i>	18.9	$7/2^{-}$
808.2	3/2-	766.4 2	100 5	42.28	5/2-
		789.3 [†] 1	34† <i>3</i>	18.9	$7/2^{-}$
		807.9 2	72 6	0.0	$3/2^{-}$
817.0		774.7 1	31 2	42.28	$5/2^{-}$
		798.14 8	100 5	18.9	$7/2^{-}$
862.1	$(1/2)^{-}$	862.2 <i>3</i>	100	0.0	$3/2^{-}$
1095.3		433.0 1	24 2	662.7	9/2-
		1053.04 7	100 6	42.28	$5/2^{-}$
		1076.4 <i>1</i>	76 5	18.9	7/2-
1116.8		454.03 6	100 7	662.7	9/2-
		476.6 2	16 <i>1</i>	640.3	
1154.1	3/2-	345.4 7	1.1 5	808.2	$3/2^{-}$
		1136.0 4	24	18.9	$7/2^{-}$
		1154.1 <i>3</i>	100 3	0.0	$3/2^{-}$
1165.0	(>3/2)	1122.73 8	41 2	42.28	$5/2^{-}$
		1146.1 2	100 6	18.9	$7/2^{-}$
		1164.94 8	45 <i>3</i>	0.0	$3/2^{-}$
1167.6	(>3/2)	527.3 1	9.5 10	640.3	
		1148.5 2	100 5	18.9	$7/2^{-}$
		1167.9 2	9.8 10	0.0	3/2-
1172.5	3/2-,(1/2)-	1130.2 4	75 15	42.28	$5/2^{-}$
		1172.3 4	100 15	0.0	3/2-
1220.0	9/2-	1177.6 <i>3</i>	14 2	42.28	5/2-
		1201.3 <i>3</i>	100 8	18.9	$7/2^{-}$
1572.4	$1/2^{-}, 3/2^{-}$	1529.1 6	14 <i>3</i>	42.28	5/2-
		1572.2 5	100 11	0.0	3/2-
1598.7		1556.43 7	100	42.28	$5/2^{-}$
1620.5	3/2,(1/2 ⁻)	988.3 <i>5</i>	45 9	632.5	$(1/2^{-})$

Continued on next page (footnotes at end of table)

γ ⁽¹⁴³Ce) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	J_f^π
1620.5	3/2,(1/2 ⁻)	1578.6 8 1620.5 5	100 27 73 18	42.28	5/2 ⁻ 3/2 ⁻
1628.7	3/2,1/2	820.8 [‡] 10	18 9	808.2	3/2-
		1586.0 10	27 9	42.28	5/2-
		1628.5 6	100 27	0.0	3/2-
1676.9		559.9 2	66 7	1116.8	
		581.7 1	100 7	1095.3	7/2-
17067		1658.2.2	79.6	18.9	1/2
1/20./		1064.1 3	22.3	640.3	9/2
		1087.14	12 2	18.0	7/2-
1835.2	$(1/2)^{-}$	97236	100 0	862.1	$(1/2)^{-}$
1055.2	(1/2)	1026.8.7	76 12	808.2	(1/2) $3/2^{-}$
		1835.8.6	65 18	0.0	3/2-
1857.0		1216.6.3	45.5	640.3	5/2
100/10		1838.11 9	100 7	18.9	$7/2^{-}$
1906 1	$(7/2)^{-}$	789 3 1	100^{\dagger} 10	1116.8	,
1700.1	(1/2)	1243.3 4	42.4	662.7	9/2-
1913.4	$(1/2)^{-}$	741.6 6	<53	1172.5	$3/2^{-}.(1/2)^{-}$
		1106.3 5	100 20	808.2	3/2-
		1912.2 8	100 33	0.0	3/2-
1945.4	$3/2^{-}$	1902.8 5	100 33	42.28	5/2-
		1928.0 15	33 22	18.9	7/2-
1980.2		1937.85 9	33 2	42.28	5/2-
		1961.44 6	100 5	18.9	7/2-
		1980.19 8	34 2	0.0	3/2-
1989.5		1172.0 [‡] 3	100 11	817.0	
		1989.5 <i>4</i>	84 14	0.0	3/2-
1993.3	$(3/2)^{-}$	820.8 10	63	1172.5	3/2-,(1/2)-
		1185.7 6	12 3	808.2	3/2-
		1949.9 2	100 9	42.28	5/2-
2027 4	$(1/2^{-})$	1993.2 4	18 3	0.0	$\frac{3}{2}$
2027.4	(1/2)	2027.0.8	100 10	0.0	(1/2) $3/2^{-}$
2057.0		1240.0.2	100 19	817.0	5/2
2057.0	3/2-	489.8.3	22.9	1572.4	$1/2^{-} 3/2^{-}$
200110	0/=	2018.8 4	100 79	42.28	5/2-
		2042.9 8	22 9	18.9	7/2-
		2061.3 6	41 9	0.0	3/2-
2065.3		948.6 2	66 <i>6</i>	1116.8	
		1248.3 4	100 8	817.0	
2202.0	1/2,3/2	2201.8 4	100	0.0	3/2-
2215.9	$(3/2)^{-}$	2174.0 6	100	42.28	5/2-
2232.1	$(3/2)^{-}$	2190.3 5	100 38	42.28	5/2-
2055.2		2231.3 8	25 13	0.0	3/2
2255.5	1/2-2/2	1592.6 2	100	002.7	9/2
2212.19	1/2 ,3/2	1117.4 10	100 50	1154.1	3/2 5/2-
		2231.3.8	100 30	42.20	$\frac{3}{2}$
2307.2	$(5/2^{-},7/2^{-})$	1139.4 2	100 9	1167.6	(>3/2)
	(5/2 ,//2)	1212.0.3	36.4	1095.3	(- 0/2)
2313.9	$3/2^{-}, 1/2^{-}$	738.4 6	<100	1572.4	$1/2^{-}, 3/2^{-}$
	/	1505.9 7	75 25	808.2	3/2-
		1681.3 8	100 38	632.5	$(1/2^{-})$
		2271.2 15	25 8	42.28	5/2-

Continued on next page (footnotes at end of table)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	${ m J}_f^\pi$
2402.8		1740 7 2	72.7	662.7	0/2-
2405.8		1740.7 2	100.8	18.0	9/2 7/2
2481 3	5/2- 7/2-	1664.3.3	100 8	817.0	112
2401.5	$\frac{3}{2}, \frac{1}{2}$	015.2.7	82 17	1572.4	1/2-2/2-
2400.0	3/2, 1/2	913.27	05 17	1372.4	1/2 ,3/2 5/2-
25172	5/2- 7/2-	2440.6 13	100 50	42.20	5/2
2317.5	3/2 ,1/2	919.10 10	100 7	640.2	
2510.2		16/0.3 3	907	2057.0	
2519.2		402.3 1	17.4 13	2057.0	0/2-
		1299.9 3	0.0 8	1220.0	9/2
		1402.4 3	12.1 12	1110.8	
		1423.8 3	6.6 11	1095.3	0/2-
		1856.4 3	6.4 11	662.7	9/2
		1878.4 2	32.3	640.3	
		2500.06 5	100 5	18.9	7/2-
2537.3	(3/2, 1/2)	1674.9 8	23 8	862.1	$(1/2)^{-}$
		2494.5 8	38 <i>23</i>	42.28	5/2-
		2538.0 10	100 15	0.0	3/2-
2570.7		1453.0 <i>3</i>	27 3	1116.8	
		1475.4 <i>3</i>	100 8	1095.3	
2643.7		2003.91 8	100 6	640.3	
		2624.72 6	86 <i>6</i>	18.9	7/2-
2728.7		1611.5 <i>3</i>	43 9	1116.8	
		2065.4 3	479	662.7	9/2-
		2709.87 8	100 8	18.9	$7/2^{-}$
2815.8		2773.8 5	21 7	42.28	5/2-
		2796.9 <i>3</i>	100 10	18.9	$\frac{1}{7/2^{-}}$
2825.1		2805.7 3	65 6	18.9	7/2-
		2825.1 3	100 8	0.0	3/2-

 $\gamma(^{143}\text{Ce})$ (continued)

[†] Multiply placed with intensity suitably divided.
 [‡] Placement of transition in the level scheme is uncertain.

¹⁴³₅₈Ce₈₅

6

Level Scheme (continued)

Intensities: Type not specified @ Multiply placed: intensity suitably divided

$\begin{array}{c|c} & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & & \gamma \operatorname{Decay} (\operatorname{Uncertain}) \end{array}$

Legend

¹⁴³₅₈Ce₈₅

¹⁴³₅₈Ce₈₅