¹⁴²Eu ε decay (1.223 min) 1975Ke08

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli	NDS 112, 1949 (2011)	1-Jun-2010

Parent: ¹⁴²Eu: E=0.0+x; $J^{\pi}=8^{-}$; $T_{1/2}=1.223$ min 8; Q(ε)=7670 30; $\%\varepsilon+\%\beta^{+}$ decay=100.0

Measured: γ , $\gamma\gamma$, $X\gamma$, ce, β^+ , $\beta\gamma(t)$ (1975Ke08).

Other measurements: 1987FiZW, 1983Al06, 1973VaYZ, 1972Ha23, 1966Ma15, 1966At04.

Decay scheme is from 1975Ke08.

The level feedings have been deduced from I γ balance, assuming no ε decay to g.s. and no IT decay.

 $T_{1/2}$ from total γ absorption (1993Al03).

 $E(\text{parent})=520 \ 50 \ (1997\text{Au}04) \text{ based on } Q(\varepsilon)(^{142}\text{Eu } 8^{-})=8150 \ 60, \ Q(\varepsilon)(^{142}\text{Eu},1^{+})=7670 \ 30 \ (1994\text{Po}26). \text{ Others: } Q(\varepsilon)(^{142}\text{Eu},8^{-})=8175 \ 50 \ (1983\text{Al}06), \ 7480 \ 100 \ (1993\text{Al}03) \ Q(\varepsilon)(^{142}\text{Eu},1^{+})=8000 \ 300 \ (1975\text{Ke}08).$

^{142}S	m	Level	l
^{142}S	m	Level	l

E(level)	$J^{\pi \dagger}$	T _{1/2}	E(level)	$J^{\pi \dagger}$	E(level)	J^{π}
0.0	0^{+}		2912.1 4	7-	3798.8 4	
768.00 20	2^{+}		3113.1 4	8-	4072.2 4	(7^{-})
1784.1 <i>3</i>	3-		3220.0? 5		4210.6 5	
1791.3 <i>3</i>	4+		3326.4 4	8+	4309.2 4	(7^{-})
2347.8 <i>3</i>	5-		3386.7 5	9-	4630.4 4	
2372.0 4	7-	170 ns 2	3570.9 4			
2420.0 3	6+	<2 ns	3713.9 4			

[†] Adopted values.

E(decay)	E(level)	Iβ ⁺ †	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(3.04 \times 10^3 \ 3)$	4630.4	0.304	0.336	6.3	0.640	av E β =1134 27; ε K=0.443 15; ε L=0.0638 22; ε M+=0.0184 7
$(3.36 \times 10^3 \ 3)$	4309.2	0.509	0.391	6.3	0.900	av $E\beta$ =1282 27; ε K=0.367 13; ε L=0.0527 19; ε M+=0.0152
$(3.46 \times 10^3 \ 3)$	4210.6	0.260	0.180	6.7	0.440	av Eβ=1327 27; εK=0.346 13; εL=0.0496 18; εM+=0.0143 6
$(3.60 \times 10^3 \ 3)$	4072.2	0.773	0.467	6.3	1.240	av Eβ=1391 27; εK=0.318 12; εL=0.0456 17; εM+=0.0131 5
$(3.87 \times 10^3 \ 3)$	3798.8	1.001	0.469	6.3	1.470	av E β =1518 27; ε K=0.270 10; ε L=0.0386 14; ε M+=0.0111 4
$(3.96 \times 10^3 \ 3)$	3713.9	2.09	0.91	6.1	3.00	av Eβ=1557 27; εK=0.256 9; εL=0.0367 13; εM+=0.0105 4
$(4.10 \times 10^3 \ 3)$	3570.9	0.534	0.206	6.8	0.740	av Eβ=1624 27; εK=0.235 9; εL=0.0337 12; εM+=0.0097 4
$(4.28 \times 10^3 \ 3)$	3386.7	1.463	0.487	6.4	1.950	av $E\beta = 1710\ 27$; $\varepsilon K = 0.211\ 8$; $\varepsilon L = 0.0302\ 11$; $\varepsilon M + = 0.0087\ 3$
$(4.34 \times 10^3 \ 3)$	3326.4	0.638	0.202	6.8	0.840	av Eβ=1738 27; εK=0.203 7; εL=0.0291 10; εM+=0.0084 3
$(4.45 \times 10^3 \ddagger 3)$	3220.0?	0.309	0.091	7.2	0.400	av Eβ=1788 27; εK=0.191 7; εL=0.0274 10; εM+=0.0079 3
$(4.56 \times 10^3 \ 3)$	3113.1	1.259	0.341	6.6	1.600	av Eβ=1838 28; εK=0.180 6; εL=0.0257 9; εM+=0.0074 3
$(4.76 \times 10^3 \ 3)$	2912.1	2.106	0.494	6.5	2.600	av E β =1932 28; ε K=0.161 6; ε L=0.0229 8; ε M+=0.00659 22
$(5.25 \times 10^3 \ 3)$	2420.0	1.9	0.77	8.5^{1u}	2.7	av Eβ=2136 27; εK=0.242 7; εL=0.0350 10; εM+=0.0101 3
5804 50	2372.0	69.5	11.5	5.2	81.0	av E β =2187 28; ε K=0.120 4; ε L=0.0171 6; ε M+=0.00491 16
						E(decay): $E\beta$ +=4782 50 (1983Al06); others: 4760 100 (1975Ke08), 4756 60 (1994Po26).

Continued on next page (footnotes at end of table)

$^{142}\mathrm{Eu}\,\varepsilon$ decay (1.223 min) 1975Ke08 (continued)

ε, β^+ radiations (continued)

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

						$\gamma(^{142}\text{Sm})$		
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	α^{\dagger}	$I_{(\gamma+ce)}^{\#}$	Comments
24.1 3		2372.0	7-	2347.8 5-	E2	1.11×10 ³ 8	95	B(E2)(W.u.)=8.2 6 ce(L)/(γ +ce)=0.78 4; ce(M)/(γ +ce)=0.179 16; ce(N+)/(γ +ce)=0.044 4 ce(N)/(γ +ce)=0.039 4; ce(O)/(γ +ce)=0.0047 5; ce(P)/(γ +ce)=1.06×10 ⁻⁶ 10 Transition seen in ce spectrum, L1/L2=0.20 35, L2/L3=1.25 25. I(γ +ce)=121 40 from L x ray, I(γ +ce)=95 from intensity balance
200.9 5	1.1 2	3113.1	8-	2912.1 7-	E2,M1	0.222 17		(1975Ke08). $\alpha(K)=0.18 \ 3; \ \alpha(L)=0.037 \ 9;$ $\alpha(M)=0.0081 \ 21; \ \alpha(N+)=0.0021 \ 5$ $\alpha(N)=0.0018 \ 5; \ \alpha(O)=0.00025 \ 5;$ $\alpha(P)=1.0\times10^{-5} \ 3$
273.8 5	1.2 2	3386.7	9-	3113.1 8-	E2,M1	0.089 15		Mult.: $\alpha(K)\exp=0.19 \ 6.$ $\alpha(K)=0.073 \ 16; \ \alpha(L)=0.0129 \ 8;$ $\alpha(M)=0.00282 \ 22;$ $\alpha(N+)=0.00073 \ 5$ $\alpha(N)=0.00063 \ 5; \ \alpha(O)=9.05\times10^{-5} \ 21; \ \alpha(P)=4.3\times10^{-6} \ 13$ Mult.: $\alpha(K)\exp=0.10 \ 4.$ Mult.: $\alpha(K)\exp=0.10 \ 4.$
474.4 <i>5</i> 540.0 <i>2</i>	0.75 <i>10</i> 5.0 <i>4</i>	3386.7 2912.1	9- 7-	2912.1 7 ⁻ 2372.0 7 ⁻	M1	0.01773		$\alpha(K)=0.01512 \ 22; \ \alpha(L)=0.00205 \ 3; \\ \alpha(M)=0.000439 \ 7; \\ \alpha(N+)=0.0001156 \ 17 \\ \alpha(N)=9.96\times10^{-5} \ 14; \\ \alpha(O)=1.499\times10^{-5} \ 21; \\ \alpha(P)=9.46\times10^{-7} \ 14$
556.6 2	86.6 <i>30</i>	2347.8	5-	1791.3 4+	E1	0.00340 5		Mult.: $\alpha(K)\exp=0.0156 \ 31.$ $\alpha=0.00340 \ 5; \ \alpha(K)=0.00291 \ 4;$ $\alpha(L)=0.000383 \ 6;$ $\alpha(M)=8.17\times10^{-5} \ 12;$ $\alpha(N+)=2.13\times10^{-5} \ 3$ $\alpha(N)=1.84\times10^{-5} \ 3;$ $\alpha(O)=2.74\times10^{-6} \ 4;$ $\alpha(P)=1.658\times10^{-7} \ 24$
563.7 2	8.3 4	2347.8	5-	1784.1 3-	E2,M1	0.013 4		Mult.: $\alpha(K)\exp=0.0020 \ 4.$ $\alpha(K)=0.011 \ 3; \ \alpha(L)=0.0016 \ 3;$ $\alpha(M)=0.00034 \ 6;$ $\alpha(N+)=8.8\times10^{-5} \ 16$ $\alpha(N)=7.6\times10^{-5} \ 14;$ $\alpha(O)=1.12\times10^{-5} \ 23;$ $\alpha(P)=6.5\times10^{-7} \ 20$ Mult.: $\alpha(K)\exp=0.0110 \ 32.$

¹⁴²Eu ε decay (1.223 min) 1975Ke08 (continued)

$\gamma(^{142}\text{Sm})$ (continued)

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{\dagger}	Comments
580.7 [@] 4 628.7 2	0.44 <i>10</i> 4.1 2	2372.0 2420.0	7- 6+	1791.3 1791.3	4 ⁺ 4 ⁺	[E2]	0.00714 10	B(E2)(W.u.)>0.065 α =0.00714 <i>10</i> ; α (K)=0.00594 <i>9</i> ; α (L)=0.000937 <i>14</i> ; α (M)=0.000203 <i>3</i> ; α (N+)=5.28×10 ⁻⁵ <i>8</i> α (N)=4.58×10 ⁻⁵ <i>7</i> ; α (O)=6.65×10 ⁻⁶ <i>10</i> ;
741.2 2 768.0 2	1.7 2 100	3113.1 768.00	8 ⁻ 2 ⁺	2372.0 0.0	7- 0+	[E2]	0.00444 7	α (P)=3.48×10 ⁻⁷ 5 Mult.: α (K)exp=0.0069 62, E2 or D. α =0.00444 7; α (K)=0.00373 6; α (L)=0.000557 8; α (M)=0.0001202 17; α (N+)=3.13×10 ⁻⁵ 5 α (N)=2.71×10 ⁻⁵ 4; α (O)=3.97×10 ⁻⁶ 6; α (P)=2 20×10 ⁻⁷ 3
x832.6 2 848.0 3 886.7 2 906.4 3 954.3 2 982.0 5 1016.1 2	$\begin{array}{c} 0.42 \ 9 \\ 0.40 \ 8 \\ 0.69 \ 7 \\ 0.50 \ 12 \\ 0.58 \ 8 \\ 0.24 \ 5 \\ 11.0 \ 6 \end{array}$	3220.0? 3798.8 3326.4 3326.4 4309.2 1784.1	8 ⁺ 8 ⁺ (7 ⁻) 3 ⁻	2372.0 2912.1 2420.0 2372.0 3326.4 768.00	7 ⁻ 7 ⁻ 6 ⁺ 7 ⁻ 8 ⁺ 2 ⁺	(E1)	0.001001 14	α =0.001001 14; α (K)=0.000861 12; α (L)=0.0001106 16; α (M)=2.35×10 ⁻⁵ 4;
1023.3 2	92.0 <i>30</i>	1791.3	4+	768.00	2+	E2	0.00237 4	$\begin{aligned} &\alpha(N+)=6.16\times10^{-6} \\ &\alpha(N)=5.31\times10^{-6} \ 8; \ \alpha(O)=7.96\times10^{-7} \ 12; \\ &\alpha(P)=4.99\times10^{-8} \ 7 \\ &\text{Mult.:} \ \alpha(K)\exp=0.0008 \ 16. \\ &\alpha=0.00237 \ 4; \ \alpha(K)=0.00201 \ 3; \\ &\alpha(L)=0.000282 \ 4; \ \alpha(M)=6.06\times10^{-5} \ 9; \\ &\alpha(N+)=1.583\times10^{-5} \ 23 \\ &\alpha(N)=1.368\times10^{-5} \ 20; \ \alpha(O)=2.03\times10^{-6} \ 3; \\ &\alpha(P)=1.195\times10^{-7} \ 17 \end{aligned}$
1151.0 3 1198.8 3 x1212.0 3 1341.9 2 1426.8 3 1652.1 3 1700.1 3 1724.5 4 x1728.5 3 1838.6 3 1889.0 4 1937.6 3 2258 4 2	$\begin{array}{c} 0.35 \ 7 \\ 0.39 \ 10 \\ 0.47 \ 10 \\ 2.98 \ 14 \\ 0.78 \ 15 \\ 0.29 \ 6 \\ 0.83 \ 7 \\ 0.12 \ 4 \\ 0.20 \ 5 \\ 0.44 \ 5 \\ 0.15 \ 3 \\ 0.51 \ 6 \\ 0 \ 64 \ 6 \end{array}$	3570.9 3570.9 3713.9 3798.8 4072.2 4072.2 4072.2 4072.2 4210.6 4309.2 4309.2 4630.4	(7 ⁻) (7 ⁻) (7 ⁻) (7 ⁻)	2420.0 2372.0 2372.0 2420.0 2372.0 2347.8 2372.0 2420.0 2372.0 2372.0	6^+ 7^- 7^- 6^+ 7^- 5^- 7^- 6^+ 7^- 7^- 7^-			Mult.: <i>α</i> (K)exp=0.0018 <i>3</i> .

[†] Additional information 1. [‡] $\alpha(K)$ exp were normalized to $\alpha(K)(768\gamma)=0.0037$ (E2). [#] Absolute intensity per 100 decays.

^(a) Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

¹⁴²Eu ε decay (1.223 min) 1975Ke08

