¹⁴²Pm ε decay **1973Ra01**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli	NDS 112, 1949 (2011)	1-Jun-2010

Parent: ¹⁴²Pm: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=40.5$ s 5; $Q(\varepsilon)=4870 \ 40$; $\%\varepsilon+\%\beta^+$ decay=100.0

Measured: Εγ, Ιγ (1973Ra01,1972De23,1970Ha29,1969Ar24,1969HaZT,1968Bl13), γγ (1970Ha29), ce (1969Ar24), β⁺ (1960Ma27), γ, K x ray (1991Fi03).

1991Fi03: $\%\beta^+=77.1\ 27$, $\%\varepsilon=22.9\ 27\ \% I\gamma(1576\gamma)=1.96\ 11$.

¹⁴²Nd Levels

E(level) [‡]	$J^{\pi^{\dagger}}$
0.0	0+
1575.7 4	2+
2217.2 6	0^{+}
2384.6 6	2+
2583.2 5	$1^{(+)}$
2845.9 8	2+
3045.7 10	$(2)^{+}$
3128.1 7	$(1,2^+)$
3358.0 20	$(2^+, 1^+)$

[†] Adopted values.

[‡] From least-squares fit to E γ , assuming $\Delta E \gamma = 1$ where uncertainty not known.

E(decay)	E(level)	$\mathrm{I}\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
$(1.51 \times 10^3 4)$	3358.0	≤0.00012	≤0.030	≥6.3	≤0.0301	av E β =231 18; ε K=0.8395 10; ε L=0.1217 3; ε M+=0.03490 10
$(1.74 \times 10^3 4)$	3128.1	0.00082	0.049	6.2	4.982×10^{-2}	av E β =332 18; ε K=0.830 3; ε L=0.1195 6; ε M+=0.03424 16
$(1.82 \times 10^3 \ 4)$	3045.7	0.00050	0.020	6.6	2.050×10^{-2}	av E β =368 18; ε K=0.823 4; ε L=0.1184 7; ε M+=0.03390 19
$(2.02 \times 10^3 4)$	2845.9	0.0041	0.0759	6.1	0.0800	av E β =456 18; ε K=0.801 6; ε L=0.1146 10; ε M+=0.0328 3
$(2.29 \times 10^3 4)$	2583.2	0.0075	0.0625	6.3	0.0700	av E β =572 18; ε K=0.754 9; ε L=0.1075 13; ε M+=0.0307 4
$(2.49 \times 10^3 4)$	2384.6	0.0213	0.109	6.2	0.130	av Eβ=660 18; εK=0.707 11; εL=0.1006 16; εM+=0.0288 5
$(2.65 \times 10^3 \ 4)$	2217.2	0.152	0.548	5.5	0.700	av Eβ=735 18; εK=0.662 12; εL=0.0940 17; εM+=0.0269 5
$(3.29 \times 10^3 4)$	1575.7	1.14	1.46	5.3	2.60	av Eβ=1025 19; εK=0.474 12; εL=0.0669 17; εM+=0.0191 5
4880 80	0.0	76.4	20.0	4.5	96.4	av Eβ=1754 19; εK=0.176 5; εL=0.0246 6; εM+=0.00703 18
						E(decay): from 1983A106; other: 4820 +50-100

(1970Ma27).

 ε, β^+ radiations

[†] Absolute intensity per 100 decays.

$^{142}\mathbf{Pm}\,\varepsilon$ decay 1973Ra01 (continued)

$\gamma(^{142}\text{Nd})$

Iγ normalization: sum of Iγ, $\varepsilon + \beta^+$ to g.s.=100; I(1576γ)/γ[±]=0.0215; ε/β^+ from theory. I(γ[±])>2000 if I(1576γ)=100 (1973Ka01); I(1576γ)/I(γ[±], ¹⁴²Sm+¹⁴²Pm)=0.0198 4 (1972Sc41) where I(γ+=, ¹⁴²Sm+¹⁴²Pm) is the 511 keV annihilation radiation from ¹⁴²Pm decay. From this 1973Ra01 deduce I(1576γ)/I(γ[±], ¹⁴²Pm)=0.0215 assuming that 100% of ε decay from ¹⁴²Sm leads to ¹⁴²Pm g.s.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
641.4 5 809.7 10 1007.9 8 1552.2 8 1575.8 4 1782 [‡] 2 2219 2	$ \begin{array}{r} 19.6 \ 10 \\ 0.62 \ 12 \\ 0.63 \ 9 \\ 0.94 \ 20 \\ 100 \\ \approx 0.6 \end{array} $	2217.2 2384.6 2583.2 3128.1 1575.7 3358.0 2217.2	$ \begin{array}{c} 0^+\\ 2^+\\ 1^{(+)}\\ (1,2^+)\\ 2^+\\ (2^+,1^+)\\ 0^+ \end{array} $	1575.7 1575.7 1575.7 1575.7 0.0 1575.7 0.0	2^+ 2^+ 2^+ 2^+ 0^+ 2^+ 0^+	E0	$\rho^2 = 17 \times 10^{-3} 6$ (1999Wo07). E _y : from 1969Ar24.
2384.3 6 2583.0 6 2845.9 8 3045.7 10 3128.3 10 3358 2	3.4 3 1.4 <i>I</i> 2.4 2 0.65 5 0.47 6 0.23 6	2384.6 2583.2 2845.9 3045.7 3128.1 3358.0	2^+ $1^{(+)}$ 2^+ $(2)^+$ $(1,2^+)$ $(2^+,1^+)$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	0^+ 0^+ 0^+ 0^+ 0^+ 0^+		Mult.: K/L=7.5 <i>10</i> (1969Ar24), no γ observed (1970Ha29). I _{γ} : I(ce(K))/I(641 γ)=0.08 <i>3</i> (1970Ha29).

[†] For absolute intensity per 100 decays, multiply by 0.033.

[‡] Placement of transition in the level scheme is uncertain.

$^{142}\mathbf{Pm}\ \varepsilon$ decay 1973Ra01

Decay Scheme Intensities: I_{γ} per 100 parent decays

Legend

- ----

