	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli	NDS 112, 1949 (2011)	1-Jun-2010

Parent: ¹⁴²Ba: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=10.6 \text{ min } 2$; $Q(\beta^-)=2212 5$; $\%\beta^-$ decay=100.0

Measured: γ , $\gamma\gamma$, K x ray, $\gamma(t)$, $\gamma\gamma(\theta)$, β , $\beta\gamma$ (1983Ch39), γ , $\gamma\gamma$ (1971La04); absolute I γ (1984So18);

1997Gr09: determined I β using total-absorption γ -ray spectrometer (TAGS) others: 1972Ho08, 1971Ho29, 1970Mc22, 1969WiZX, 1968A106, 1962Fr04, 1959Sc36.

Measured E β =1011 30, 1103 30, 1775 35 $\beta\gamma$ (1983Ch39), 1000 100, \approx 1700 $\beta\gamma$ (1962Fr04).

 β feedings were calculated from I(γ +ce) balance assuming: 1. No β^- to 2⁻ g.s. (I β (0.0+77.6 level))=2.0 19 (1997Gr09) TAGS; 2.

All gammas from levels ≤ 604.5 are M1 (except 68 γ E2 from 145.9-keV level). The values given by 1997Gr09 measured by TAGS are in excellent agreement and are given as comments.

Decay scheme is that of 1983Ch39.

					¹⁴² La	a Levels
E(level)	$J^{\pi^{\dagger}}$	T _{1/2}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0	2-		335.02 6	1(-)	866.91 6	
77.594 <i>3</i>	$(2)^{-}$		361.44 11		969.57 14	
145.82 8	$(4)^{-}$	0.87 µs 17	363.94 <i>3</i>	$2^{(-)}$	984.39 8	
147.24 5	-		417.80 9		1009.68 10	
231.3? 7			425.00 <i>3</i>	$1^{(-)}$	1078.71 5	(1^{+})
255.303 12	1-		432.30 5	1-	1204.35 4	$(1)^{+}$
300.37 6			604.46 6	1,2	1457.90 4	$(1)^{+}$
309.210 11	2-		666.14 <i>14</i>		1539.26 16	(1)

[†] Adopted values.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(673 5)	1539.26	0.28 5	6.33 8	av $E\beta=215.3$ 19 I β^- : 0.28 (1997Gr09) TAGS.
(754 5)	1457.90	15.4 6	4.759 22	$av E\beta = 246.2 \ 20$ $B^{-1}: 14.0 \ (1997Gr09) TAGS.$
(1008 5)	1204.35	46 2	4.737 22	av $E\beta$ =346.4 21 E(decay): 1011 30. B^{-1} : 46.0 (1997Gr09) TAGS
(1133 5)	1078.71	22 1	5.246 23	av $E\beta$ =397.9 21 E(decay): 1103 30. B^{-2} 20 (1997Gr09) TAGS
(1780 5)	432.30	4.3 2	6.705 23	av $E\beta$ =675.9 23 B^{-1} 4.8 (1997Gr09) TAGS.
(1787 5)	425.00	5.4 2	6.614 <i>19</i>	av $E\beta$ =679.1 23 E(decay): 1775 35. B^{-} : 6.0 (1997Gr09) TAGS.
(1877 5)	335.02	0.3 1	7.95 15	av $E\beta$ =719.1 23
(1957 5)	255.303	3.5 7	6.96 9	av $E\beta$ =754.6 23 I β^- : 4.6 (1997Gr09) TAGS.

[†] Absolute intensity per 100 decays.

1

 $\gamma(^{142}\text{La})$

I γ normalization: From I(255 γ)=20.6% 6 (average of 21.1% 6 (1983Ch39) and 20.0% 20 (1984So18)). I(γ +ce) given are those derived by 1983Ch39 from I γ and assumed multipolarities.

E_{γ}	$I_{\gamma}^{\textcircled{a}a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [‡]	α^{\dagger}	$I_{(\gamma+ce)}^{a}$	Comments
(8.7) 63.6 <i>1</i>	4.4 6	309.210 363.94	2 ⁻ 2 ⁽⁻⁾	300.37 300.37		M1,E2	74	32 <i>3</i> 23 <i>3</i>	I _(γ+ce) : deduced from coincidence spectra. ce(K)/(γ+ce)=0.46 18; ce(L)/(γ+ce)=0.33 21; ce(M)/(γ+ce)=0.07 7; ce(N+)/(γ+ce)=0.017 16 ce(N)/(γ+ce)=0.015 14; ce(O)/(γ+ce)=0.0022 20; ce(P)/(γ+ce)=2.9×10 ⁻⁵ 12 Mult.: α (K)exp=3.8 9.
68.3 ^b 1	4.0 ^b 9	145.82	(4) ⁻	77.594	(2)-	E2	7.92	37 8	B(E2)(W.u.)=1.10 22 ce(K)/(γ +ce)=0.392 6; ce(L)/(γ +ce)=0.389 6; ce(M)/(γ +ce)=0.0866 17; ce(N+)/(γ +ce)=0.0209 5 ce(N)/(γ +ce)=0.0183 4; ce(O)/(γ +ce)=0.00256 6; ce(P)/(γ +ce)=2.01×10 ⁻⁵ 4 Mult.: Only E2 is possible due to the intensity balance.
68.3 ^b 1	3.8 ^b 5	432.30	1-	363.94	2 ⁽⁻⁾	M1,E2	5.6 24	16 2	ce(K)/(γ +ce)=0.48 17; ce(L)/(γ +ce)=0.29 19; ce(M)/(γ +ce)=0.06 6; ce(N+)/(γ +ce)=0.016 14 ce(N)/(γ +ce)=0.014 12; ce(O)/(γ +ce)=0.0019 17; ce(P)/(γ +ce)=3.0×10 ⁻⁵ 11 Mult: α (K)exp=3.3 5;
69.7 1	12.8 6	147.24	-	77.594	(2)-	M1,E2	5.2 22	54 <i>3</i>	$ce(K)/(\gamma+ce)=0.48\ 17;\ ce(L)/(\gamma+ce)=0.28\ 18;\ ce(M)/(\gamma+ce)=0.06\ 6;\ ce(N+)/(\gamma+ce)=0.015\ 13\ ce(N)/(\gamma+ce)=0.013\ 12;\ ce(O)/(\gamma+ce)=0.0019\ 16;\ ce(P)/(\gamma+ce)=3.0\times10^{-5}\ 11\ Mult:\ \alpha(K)exp=2.7\ 4.$
77.594 3	462 16	77.594	(2)-	0.0	2-	M1,E2	3.6 14	1572 <i>51</i>	ce(K)/(γ +ce)=0.48 <i>15</i> ; ce(L)/(γ +ce)=0.24 <i>15</i> ; ce(M)/(γ +ce)=0.05 <i>5</i> ; ce(N+)/(γ +ce)=0.013 <i>11</i> ce(N)/(γ +ce)=0.011 <i>9</i> ; ce(O)/(γ +ce)=0.0016 <i>13</i> ; ce(P)/(γ +ce)=3.0×10 ⁻⁵ <i>10</i> Mult.: α (K)exp=1.8 2 (1983Ch39), 2.0 4 (1970Mc22). E _v : from (1979Bo26).
79.8 <mark>&</mark>	1.8 6	335.02	1 ⁽⁻⁾	255.303	1-			5.8 19	
84.0 <mark>&</mark>	1.5 5	231.3?		147.24	-			4.5 15	
123.0 <i>I</i>	45.0 16	432.30	1-	309.210	2-	M1,E2	0.78 18	73 3	ce(K)/(γ +ce)=0.33 4; ce(L)/(γ +ce)=0.09 5; ce(M)/(γ +ce)=0.019 11; ce(N+)/(γ +ce)=0.005 3 ce(N)/(γ +ce)=0.0041 24; ce(O)/(γ +ce)=0.0006 4; ce(P)/(γ +ce)=2.14×10 ⁻⁵ 24 Mult.: α (K)exp=0.65 10.
130.0 <mark>&</mark>	3.0 8	361.44		231.3?				4.5 12	
147.5 ^{&}	3.6 6	147.24	-	0.0	2^{-}			5 1	

					142 Ba β^-	decay 198	3Ch39 (conti	nued)	
						$\gamma(^{142}\text{La})$ (co	ontinued)		
Eγ	$I_{\gamma}^{@a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	$\delta^{\#}$	α^{\dagger}	$I_{(\gamma+ce)}^{a}$	Comments
153.1 <i>I</i> 154.6 <i>I</i> 162.3 <i>I</i> 172.6 <i>3</i> 177.0 <i>I</i> 215.7 <i>2</i> 216.6 <i>I</i> 220.2 <i>2</i> 222.8 <i>I</i> 231.611 <i>I</i> 0	4.2 10 23.6 14 5.5 4 1.8 7 84 2 5 2 10 2 3.2 6 15.7 5 591 12	300.37 300.37 309.210 604.46 432.30 361.44 363.94 1204.35 300.37 309.210	2^{-} 1,2 1 ⁻ $2^{(-)}$ (1) ⁺ 2 ⁻	$\begin{array}{c} & & \\ 147.24 & - \\ 145.82 & (4)^{-} \\ 147.24 & - \\ 432.30 & 1^{-} \\ 255.303 & 1^{-} \\ 145.82 & (4)^{-} \\ 147.24 & - \\ 984.39 \\ 77.594 & (2)^{-} \\ 77.594 & (2)^{-} \end{array}$	M1+E2	-0.16 4	0.1052	5.6 <i>13</i> 31 2 7.1 5 2.2 9 103 3 5.9 2 11 2 3.3 6 17.6 6 656 <i>13</i>	ce(K)/(γ +ce)=0.0813 <i>11</i> ; ce(L)/(γ +ce)=0.01098 <i>18</i> ; ce(M)/(γ +ce)=0.00228 <i>4</i> ; ce(N+)/(γ +ce)=0.000589 <i>10</i> ce(N)/(γ +ce)=0.000501 <i>8</i> ; ce(O)/(γ +ce)=8.14×10 ⁻⁵ <i>13</i> ; ce(P)/(γ +ce)=6.27×10 ⁻⁶ <i>9</i> E _{γ} : from 1979Bo26. I _{γ} : I γ =10.8% <i>18</i> if I γ =541 (1984So18). Mult: α (K)exp=0.09 <i>2</i> ; δ may also be +0.33 <i>3</i> (if
242.9 2	92	604.46	1,2	361.44				10 2	J(77.59)=1).
255.300 12	20 2 1000 23	255.303	(1)	0.0 2	M1+E2	-0.26 16	0.0808	29 3 1084 25	ce(K)/(γ +ce)=0.0638 <i>10</i> ; ce(L)/(γ +ce)=0.0087 <i>3</i> ; ce(M)/(γ +ce)=0.00182 <i>7</i> ; ce(N+)/(γ +ce)=0.000468 <i>17</i> ce(N)/(γ +ce)=0.000399 <i>15</i> ; ce(O)/(γ +ce)=6.45×10 ⁻⁵ <i>20</i> ; ce(P)/(γ +ce)=4.89×10 ⁻⁶ <i>13</i> E _{γ} : from 1979Bo26. Mult.: α (K)exp=0.11 <i>2</i> ; δ may also be -0.03 <i>5</i> (if J(432.3)=0). I _{γ} : I(255 γ)/ β ⁻ =0.211 <i>6</i> (1983Ch39), 0.20 <i>2</i> (1984So18).
257.5 1	6.8 16	335.02	$1^{(-)}$	77.594 $(2)^{-}$			0.0602.22	7.3 18	
269.5 <i>I</i>	45 4	604.46	1,2	335.02 I ⁽⁼⁾	(M1+E2)		0.0682 22	48 5	ce(K)/(γ +ce)=0.053 4; ce(L)/(γ +ce)=0.0086 12; ce(M)/(γ +ce)=0.0018 3; ce(N+)/(γ +ce)=0.00046 7 ce(N)/(γ +ce)=0.00040 6; ce(O)/(γ +ce)=6.2×10 ⁻⁵ 7; ce(P)/(γ +ce)=3.8×10 ⁻⁶ 6 δ : +0.22 6 (if J=1); -0.14 7 (if J=2).
283.5 2 286.3 1	14 <i>4</i> 54 <i>4</i>	361.44 363.94	2 ⁽⁻⁾	77.594 (2) ⁻ 77.594 (2) ⁻	(M1+E2)	0.00 6	0.0598	15 4 57 4	$ce(K)/(\gamma+ce)=0.0483 7; ce(L)/(\gamma+ce)=0.00639 9; ce(M)/(\gamma+ce)=0.001326 19; ce(N+)/(\gamma+ce)=0.000343 5$

ω

 $^{142}_{57} La_{85}$ -3

L

1						¹⁴² Ba	3 ⁻ decay	1983Ch39 (c	ontinued)	
							$\gamma(^{142}\text{La})$) (continued)		
Eγ	$I_{\gamma}^{\textcircled{a}a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α^{\dagger}	$I_{(\gamma+ce)}^{a}$	Comments
309.2 1	126 4	309.210	2-	0.0	2-	(M1+E2)	-0.74 15	0.0467 9	132 5	ce(N)/(γ +ce)=0.000292 5; ce(O)/(γ +ce)=4.75×10 ⁻⁵ 7; ce(P)/(γ +ce)=3.73×10 ⁻⁶ 6 δ : weighted average of possible δ =-0.05 8 and +0.09 10. ce(K)/(γ +ce)=0.0375 9; ce(L)/(γ +ce)=0.00557 11; ce(M)/(γ +ce)=0.00117 3; ce(N+)/(γ +ce)=0.000298 6 ce(N)/(γ +ce)=0.000255 6; ce(O)/(γ +ce)=4.06×10 ⁻⁵ 7; ce(P)/(γ +ce)=2.78×10 ⁻⁶ 10
335.0 <i>1</i> 337.7 2 340.5 7 346.8 2	71.5 6 15.1 <i>11</i> 1.2 <i>10</i> 6.5 6	335.02 1204.35 417.80 425.00	$1^{(-)}$ (1) ⁺ $1^{(-)}$	0.0 866.91 77.594 77.594	2^{-} (2) ⁻ (2) ⁻				74.4 6 15.2 <i>11</i>	
354.7°° 356.8°	2.4 8 4.0 <i>12</i>	432.30 666.14	1	309.210	(2) 2 ⁻				2.4 8	
363.96 3	230 7	363.94	2(-)	0.0	2-	(M1+E2)	-0.77 12	0.0297 7	238 7	$ce(K)/(\gamma+ce)=0.0244 \ 6; \ ce(L)/(\gamma+ce)=0.00351 \ 5; ce(M)/(\gamma+ce)=0.000734 \ 11; \ ce(N+)/(\gamma+ce)=0.000188 3$
										ce(N)/(γ +ce)=0.0001605 23; ce(O)/(γ +ce)=2.57×10 ⁻⁵ 4; ce(P)/(γ +ce)=1.81×10 ⁻⁶ 6 E _{γ} : from 1979Bo26. δ : weighted average of possible δ =-0.74 15 and -0.83 21.
379.4 1	28.1 6	1457.90	$(1)^{+}$	1078.71	(1^{+})				28.9 6	
380.0	3.2 11	984.39		604.46	1,2				3.3 11	
412.7	2.7 13	1078.71	(1^{+})	666.14						
417.8 2 425.04 <i>3</i>	18 2 279 5	417.80 425.00	1(-)	0.0 0.0	2- 2-	(M1+E2)	+0.31 24	0.0211 9	285 5	$ce(K)/(\gamma+ce)=0.0177 \ 8; \ ce(L)/(\gamma+ce)=0.00234 \ 5; ce(M)/(\gamma+ce)=0.000486 \ 9; \ ce(N+)/(\gamma+ce)=0.0001255 \ 25 \ 25 \ 100000000000000000000000000000000000$
										$ce(N)/(\gamma+ce)=0.0001068\ 21;\ ce(O)/(\gamma+ce)=1.74\times10^{-5}$ 4; ce(P)/(\gamma+ce)=1.35\times10^{-6}\ 7 E : from 1979Bo26
432.3 <i>1</i> 434.4 <i>1</i>	50 <i>4</i> 22 <i>3</i>	432.30 866.91	1-	0.0 432.30	2^{-} 1^{-}				51 4	Ly. nom 17770020.
448.3 <i>1</i> 457.1 <i>1</i>	12.1 7 18.2 7	1457.90 604.46	$(1)^+$ 1,2	1009.68 147.24	_	(M1+E2)		0.0156 24	18.5 7	$ce(K)/(\gamma+ce)=0.0130\ 22;\ ce(L)/(\gamma+ce)=0.00184\ 13;$
										$ce(M)/(\gamma+ce)=0.000385\ 25;\ ce(N+)/(\gamma+ce)=9.9\times10^{-5}$
										ce(N)/(γ +ce)=8.4×10 ⁻⁵ 6; ce(O)/(γ +ce)=1.35×10 ⁻⁵ 12; ce(P)/(γ +ce)=9.6×10 ⁻⁷ 20
473.4 <i>1</i> 488.3 <i>2</i>	20.3 7 4.5 7	1457.90 1457.90	$(1)^+$ $(1)^+$	984.39 969.57						δ : for possible values of δ see 1983Ch39.
1										

4

L

	¹⁴² Ba β^- decay 1983Ch39 (continued)										
						γ (¹⁴² La) (continued)				
Eγ	$I_{\gamma}^{@a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{\dagger}	Comments				
537.2 2 557.7 1 577.7 2 588.4 2 590.7 1 599.8 1 604.3 2	3.4 6 12.0 5 3.3 5 4.4 7 15.1 7 89.8 <i>10</i> 20.4 <i>10</i>	969.57 866.91 1009.68 666.14 1457.90 1204.35 604.46	$(1)^+$ $(1)^+$ 1,2	$\begin{array}{cccc} 432.30 & 1^{-} \\ 309.210 & 2^{-} \\ 432.30 & 1^{-} \\ 77.594 & (2)^{-} \\ 866.91 \\ 604.46 & 1,2 \\ 0.0 & 2^{-} \end{array}$	(M1+E2)	0.0076 14	E _γ : authors' value of 558.4 2 in their table 1 seems to be a misprint. α =0.0076 14; α (K)=0.0065 13; α (L)=0.00088 12; α (M)=0.000183 23; α (N+)=4.7×10 ⁻⁵ 7 α (N)=4.0×10 ⁻⁵ 6; α (O)=6.5×10 ⁻⁶ 9; α (P)=4.8×10 ⁻⁷ 11 S ₁ = 0.04 10 (f L 2)				
$\begin{array}{c} 620.3 \ 3\\ 622.8 \ 2\\ 649.3 \ 2\\ 654.6 \ 2\\ 660.9 \ 1\\ 674.4 \ 6\\ 674.7 \ 7\\ 714.4 \ 4\\ 769.4 \ 1\\ 771.9 \ 2\\ 786.6 \ 2\\ 791.6 \ 2\\ 823.4 \ 3\\ 840.4 \ 1\\ 953.4 \ 3\\ 840.$	$\begin{array}{c} 2.4 \ 6\\ 3.2 \ 6\\ 3.4 \ 6\\ 4.3 \ 6\\ 11.0 \ 6\\ 3.2 \ 13\\ 3.4 \ 13\\ 2.0 \ 7\\ 36.7 \ 9\\ 4.6 \ 7\\ 9.2 \ 7\\ 4.1 \ 7\\ 14 \ 5\\ 176 \ 6\\ 16 \ 6 \end{array}$	984.39 984.39 984.39 1078.71 1078.71 984.39 1009.68 969.57 1078.71 1204.35 1457.90 1078.71 1204.35	(1^+) (1^+) $(1)^+$ $(1)^+$ $(1)^+$ (1^+) $(1)^+$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			δ: -0.30 34 (if J=1); +0.44 10 (if J=2).				
853 895.2 <i>1</i> 907.2 <i>4</i> 931.6 <i>4</i> 932.6 <i>9</i> 934	$ \begin{array}{r} 1.5 \\ 676 \\ 19 \\ 2.0 \\ 7 \\ 4 \\ 3 \\ 4 \\ 3 \\ 1 \\ 5 \\ 8 \\ \end{array} $	1457.90 1204.35 984.39 1078.71 1009.68	$(1)^{+}$ $(1)^{+}$ (1^{+})	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			I_{γ} : I_{γ} =12.2% 9 if I_{γ} =609 (1984So18).				
949.1 <i>I</i> 984.5 <i>3</i> 1001.2 <i>I</i> 1033.0 <i>I</i> 1040&	517 <i>13</i> 3.6 7 474 <i>12</i> 16.7 7 3 8 <i>13</i>	1204.35 984.39 1078.71 1457.90	$(1)^{+}$ $(1)^{+}$ $(1)^{+}$ $(1)^{+}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			I_{γ} : $I\gamma$ =9.2% 10 if $I\gamma$ =459 (1984So18).				
1078.7 <i>I</i> 1094.1 <i>I</i> 1114.4 <i>4</i> 1122.9 <i>I</i> 1126.8 <i>I</i> 1148.7 <i>I</i> 1202.4 <i>I</i>	559 16 137 6 5 2 19.1 8 73 6 24.3 9 270 10	1457.90 1078.71 1457.90 1539.26 1457.90 1204.35 1457.90 1457.90	(1) (1^+) $(1)^+$ $(1)^+$ $(1)^+$ $(1)^+$ $(1)^+$	$\begin{array}{c} 0.0 & 2^-\\ 363.94 & 2^{(-)}\\ 425.00 & 1^{(-)}\\ 335.02 & 1^{(-)}\\ 77.594 & (2)^-\\ 309.210 & 2^-\\ 255.303 & 1^-\\ \end{array}$			I _γ : Iγ=11.0% 10 if Iγ=551 (1984So18).				

S

 $^{142}_{57} La_{85}$ -5

L

 $^{142}_{57} La_{85}$ -5

From ENSDF

$\gamma(^{142}La)$ (continued)

Eγ	$I_{\gamma}^{@a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1204.3 <i>1</i>	694 11	1204.35	$(1)^{+}$	0.0	2-
1230.2 2	4.1 4	1539.26	(1)	309.210	2-
1283.6 3	3.2 6	1539.26	(1)	255.303	1-
1380.2 <i>1</i>	166 8	1457.90	$(1)^{+}$	77.594	$(2)^{-}$

[†] Additional information 1. [‡] $\alpha(K)$ exp were derived from K x ray and I γ (coin spectra).

A_2 and A_4 from $\gamma\gamma(\theta)$ are given in 1983Ch39. As in odd-odd nuclei the M1 component in M1+E2 γ 's is usually dominant, we present only the lowest of 2 possible values of δ ; for details see 1983Ch39. @ Absolute I γ from 1984So18 were renormalized to I(641 γ ¹⁴²La β decay)=47.4% 5 (1981Ge04).

[&] From $\gamma\gamma$; $\Delta E > 0.4$.

^a For absolute intensity per 100 decays, multiply by 0.0206 6.
 ^b Multiply placed with intensity suitably divided.

¹⁴²₅₇La₈₅

7

¹⁴²₅₇La₈₅

8

Decay Scheme (continued)

