Adopted Levels

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli	NDS 112,1949 (2011)	1-Jun-2010	

 $\begin{aligned} Q(\beta^{-}) &= -9.4 \times 10^{3} \text{ syst}; \ S(n) &= 1.10 \times 10^{4} \text{ syst}; \ S(p) &= -8. \times 10^{2} \text{ syst}; \ Q(\alpha) &= 4.0 \times 10^{3} \text{ syst} \quad 2012 \text{Wa38} \\ \text{Note: Current evaluation has used the following Q record } -9.2\text{E}+3 \text{ SY1.11E}+4 \text{ syst}-700 \text{ SY3.8E}+3 \text{ syst} \quad 2011 \text{AuZZ}. \\ \text{Uncertainties associated with these Q values are: } & \Delta Q(\beta^{-}) &= 7, \ \Delta S(n) &= 7, \ \Delta S(p) &= 6, \ \Delta Q(\alpha) &= 6. \\ Q(\varepsilon p) &= 1.00 \times 10^{4} \text{ 5 (syst.) } 2011 \text{AuZZ}. \\ \text{Values in } & 2003 \text{AuO3: } S(n) &= 1.12 \times 10^{4} \text{ 7 (syst.), } S(p) &= -6. \times 10^{2} \text{ 6 (syst.), } Q(\alpha) &= 3.7 \times 10^{3} \text{ 6 (syst.), } Q(\varepsilon p) &= 9.8 \text{e}^{+} 3 \times 10^{3} \text{ 5 (syst.).} \end{aligned}$

Experimental works:

2001Xu02: ${}^{106}Cd({}^{40}Ca,p3n)$ E=242 MeV, measured proton- $\gamma\gamma$ coincidence, He-jet plus tape transport system. ${}^{142}Ho$ identified

following coincidences between protons and ¹⁴¹Tb γ rays. This work was then compared with statistical model calculations in 2002Xu11 and reviewed and discussed in 2005Xu04 with experimental results for other isotopes.

2000So11: ⁹⁰Zr(¹⁹⁷Au,x), E=30 MeV/A. Identification using A1200 mass separator at Michigan State University.

1993Li40: ¹⁰⁶Cd(⁴⁰Ca,p3n), E=198 MeV, measured proton spectra following evaporation residue Mass/Charge separation. No evidence for direct proton radioactivity found.

2003Au03 value: $S(n)=1.12\times10^4$ syst, S(p)=-600 syst, $Q(\alpha)=3.7\times10^3$ syst.

¹⁴²Ho Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	(7 ⁻ ,8 ⁺)	0.4 s <i>1</i>	$\% \varepsilon + \% \beta^+ \approx 100; \ \% \varepsilon p>0; \ \% p\approx 0$ J^{π} : From 2001Xu01 the strongest observed γ line in ¹⁴¹ Tb is the 307 keV (15/2 ⁻) to (11/2 ⁻). Based on relative branching ratios to other final states in ¹⁴¹ Tb, it is suggested that the ground state J assignment could be 6, 7, or 8. Based on the same experimental data, this suggestion was later modified to 5,6, or 7. It is further mentioned that the energy spectrum of β -delayed protons is fit by 7 ⁻ and 8 ⁺ with potential energy surface calculations favoring 7 ⁻ . Conf=($\pi h_{7/2}$ -[523] $\otimes v h_{11/2}$ -[404]) is suggested (2002Xu11). However, branching ratios are also consistent (2002Xu11) with 8 ⁺ , conf=($\pi h_{7/2}$ -[525] $\otimes v h_{9/2}$ -[514]) suggested in 1995Mo29. Direct proton radioactivity from ¹⁴² Ho was searched for but not found (1993Li40), which is explained because of the small value of the proton separation energy. As a consequence, we adopt $\% p\approx 0$. T _{1/2} : from 307 γ (t)(¹⁴¹ Tb) (2001Xu02).