Literature Cutoff Date

Type Author Citation T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli NDS 112, 1949 (2011) Full Evaluation 1-Jun-2010

Parent: ¹⁴²Gd: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=70.2$ s 6; $Q(\varepsilon)=4360$ 40; $\%\varepsilon+\%\beta^+$ decay=100.0

Identification: mass-separator (1991Fi03,1988GiZV), excit (1988Tu03).

Measured: γ, γ-K x ray coin (1991Fi03,1988GiZV,1988Tu03,1973VaYZ), ce, γγ (1988Tu03).

1988GiZV: same authors as 1991Fi03.

¹⁴²Eu Levels

E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	E(level) [†]
0.0	1+	550.60 10	+	732.07 7	1480.9 10
178.87 5	$(2)^{-}$	585.84 10		750.33 8	1485.9 10
280.33 7	$1^+, 2^+$	591.23 8		935.59 8	1779.01 8
284.26 5	$0^+, 1^+, 2^+$	614.52 7	+	1000.20 10	1948.6 <i>3</i>
496.45 11		619.72 10		1210.23? 25	1956.6 <i>3</i>
503.23 6	+	631.70 <i>10</i>		1383.28 12	2025.59 21
526.30 7	+	660.89 8		1412.94 8	2160.9 10
544.53 12		704.93 10		1438.33 7	

[†] From least-squares fit to $E\gamma$.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(2.20 \times 10^3 4)$	2160.9	0.015	0.20	6.1	0.22	av Eβ=535 18; εK=0.783 7; εL=0.1153 10; εM+=0.0334 3
$(2.33 \times 10^3 4)$	2025.59	0.07	0.6	5.7	0.7	av Eβ=595 18; εK=0.760 8; εL=0.1117 12; εM+=0.0324 4
$(2.40 \times 10^3 4)$	1956.6	0.09	0.7	5.7	0.8	av E β =625 18; ε K=0.747 8; ε L=0.1097 13; ε M+=0.0318 4
$(2.41 \times 10^3 4)$	1948.6	0.11	0.89	5.6	1.0	av E β =629 18; ε K=0.745 9; ε L=0.1094 13; ε M+=0.0317 4
$(2.58 \times 10^3 4)$	1779.01	0.99	5.3	4.8	6.3	av E β =704 18; ε K=0.709 10; ε L=0.1038 15; ε M+=0.0301 5
$(2.87 \times 10^3 4)$	1485.9	0.027	0.083	6.7	0.11	av Eβ=836 18; εK=0.636 11; εL=0.0928 16; εM+=0.0269 5
$(2.88 \times 10^3 4)$	1480.9	0.084	0.26	6.3	0.34	av Eβ=838 18; εK=0.634 11; εL=0.0926 16; εM+=0.0268 5
$(2.92 \times 10^3 4)$	1438.33	1.9	5.5	4.9	7.4	av Eβ=857 18; εK=0.623 11; εL=0.0909 16; εM+=0.0263 5
$(2.95 \times 10^3 4)$	1412.94	0.86	2.3	5.3	3.2	av Eβ=868 18; εK=0.616 11; εL=0.0899 16; εM+=0.0260 5
$(2.98 \times 10^3 4)$	1383.28	0.12	0.33	6.2	0.45	av Eβ=882 18; εK=0.608 11; εL=0.0887 16; εM+=0.0257 5
$(3.15 \times 10^3 4)$	1210.23?	0.080	0.16	6.5	0.24	av Eβ=960 19; εK=0.561 11; εL=0.0818 17; εM+=0.0237 5
$(3.36 \times 10^3 4)$	1000.20	0.72	1.1	5.8	1.8	av E β =1055 19; ε K=0.505 11; ε L=0.0734 16; ε M+=0.0212 5
$(3.42 \times 10^3 4)$	935.59	0.38	0.53	6.1	0.91	av E β =1085 19; ε K=0.488 11; ε L=0.0709 16; ε M+=0.0205 5
$(3.61 \times 10^3 4)$	750.33	0.81	0.89	5.9	1.7	av Eβ=1169 19; εK=0.441 10; εL=0.0640 15; εM+=0.0185 5
$(3.63 \times 10^3 4)$	732.07	0.646	0.694	6.0	1.34	av Eβ=1178 19; εK=0.436 10; εL=0.0634 15; εM+=0.0183 5
$(3.66 \times 10^3 4)$	704.93	0.43	0.45	6.2	0.88	av Eβ=1190 19; εK=0.430 10; εL=0.0624 15; εM+=0.0180 5
$(3.70 \times 10^3 4)$	660.89	0.39	0.38	6.3	0.77	av Eβ=1210 19; εK=0.419 10; εL=0.0608 14; εM+=0.0176 4
$(3.73 \times 10^3 4)$	631.70	0.659	0.631	6.1	1.29	av Eβ=1224 19; εK=0.412 10; εL=0.0598 14; εM+=0.0173 4
$(3.74 \times 10^3 4)$	619.72	0.966	0.914	5.9	1.88	av Eβ=1229 19; εK=0.410 10; εL=0.0594 14; εM+=0.0172 4
$(3.75 \times 10^3 4)$	614.52	0.3	0.3	6.4	0.6	av Eβ=1231 19; εK=0.408 10; εL=0.0592 14; εM+=0.0171 4
$(3.77 \times 10^3 4)$	591.23	0.642	0.588	6.1	1.23	av E β =1242 19; ε K=0.403 10; ε L=0.0584 14; ε M+=0.0169 4
$(3.77 \times 10^3 4)$	585.84	0.49	0.45	6.3	0.94	av E β =1245 19; ε K=0.402 10; ε L=0.0583 14; ε M+=0.0168 4
$(3.81 \times 10^3 4)$	550.60	0.21	0.18	6.7	0.39	av Eβ=1261 19; εK=0.394 10; εL=0.0571 14; εM+=0.0165 4
$(3.82 \times 10^3 4)$	544.53	0.25	0.21	6.6	0.46	av E β =1264 19; ε K=0.392 10; ε L=0.0569 14; ε M+=0.0165 4
$(3.83 \times 10^3 4)$	526.30	3.3	2.9	5.5	6.2	av Eβ=1272 19; εK=0.388 9; εL=0.0563 14; εM+=0.0163 4
$(3.86 \times 10^3 4)$	503.23	0.98	0.82	6.0	1.8	av Eβ=1283 19; εK=0.383 9; εL=0.0555 13; εM+=0.0161 4
$(3.86 \times 10^3 4)$	496.45	0.066	0.054	7.2	0.12	av E β =1286 19; ε K=0.382 9; ε L=0.0553 13; ε M+=0.0160 4
$(4.08 \times 10^3 \ 4)$	284.26	2.2	1.5	5.8	3.7	av E β =1383 19; ε K=0.337 8; ε L=0.0488 12; ε M+=0.0141 4

Continued on next page (footnotes at end of table)

1991Fi03,1988Tu03 (continued)

¹⁴²Gd ε decay

ϵ, β^+ radiations (continued) $I\beta^+$ Iε $I(\varepsilon + \beta^+)^{\dagger}$ Comments E(decay) E(level) Log ft $(4.08 \times 10^3 4)$ 0.78 0.52 6.3 1.3 av E\u03c6=1385 19; \u03c6K=0.336 8; \u03c6L=0.0487 12; \u03c6M+=0.0141 4 280.33 $(4.36 \times 10^3 4)$ 0.0 34 3 18 2 4.79 5 52 5 av E\u03b3=1515 19; \u03c6K=0.285 7; \u03c6L=0.0413 10; \u03c6M+=0.0119 3 I ε : from balance of I γ with I(178.8 γ)=11.2% 11 and decay scheme; others: $I\varepsilon + I\beta^+ = 20.0\% \ 8 \ (1988 GiZV), \ 61\% \ 33$ (1988Tu03). [†] Absolute intensity per 100 decays. $\gamma(^{142}\text{Eu})$ Iγ normalization: I(178.8γ)=11.2% 11 (1988GiZV). $I_{\gamma}^{\ddagger a}$ E_v‡ Mult.[&] α^{\dagger} J_i^{π} E_i (level) E_f J^{π} Comments $1^{+}.2^{+}$ 0.92 23 280.33 $178.87(2)^{-1}$ [E1] 0.273 $\alpha(K)=0.230$ 4; $\alpha(L)=0.0342$ 5; 101.4 1 $\alpha(M)=0.00736 \ 11; \ \alpha(N+..)=0.00192 \ 3$ *α*(N)=0.001656 24; *α*(O)=0.000249 4; $\alpha(P)=1.92\times10^{-5}$ 3 105[@] 1 526.30 + ≈ 1 631.70 136[@] 1 ≈ 1 631.70 496.45 178.9 1 100.0 15 178.87 $(2)^{-}$ 0.0 1+ E1 0.0590 $\alpha(K)=0.0500$ 7; $\alpha(L)=0.00706$ 10; α(M)=0.001517 22; α(N+..)=0.000401 6 α (N)=0.000344 5; α (O)=5.28×10⁻⁵ 8; $\alpha(P)=4.51\times10^{-6}$ 7 Mult.: α (K)exp=0.044 5. 203[@] 1 ≈0.8 935.59 732.07 212.2 1 1.53 15 284.26 0+,1+,2+ 496.45 216[@] 1 280.33 1+.2+ ≈0.5 496.45 222.8 1 503.23 280.33 1+,2+ M1+E2 14.4 6 0.173 23 $\alpha(K)=0.14$ 3; $\alpha(L)=0.028$ 5; $\alpha(M)=0.0061$ 11; α (N+..)=0.0016 3 α (N)=0.00139 24; α (O)=0.000208 25; $\alpha(P)=1.4\times10^{-5}$ 5 Mult.: *α*(K)exp=0.138 *15*, K/L=4.1 *8*; $\delta = 1.0 + 9 - 3$ (from α (K)exp). 228.1[@] 1 ≈0.9 732.07 503.23 + x238.8 1 1.3 2 241.7 2 284.26 0+,1+,2+ 0.1570 $\alpha(K)=0.1331$ 19; $\alpha(L)=0.0187$ 3; 1.5 4 526.30 M1 α(M)=0.00404 6; α(N+..)=0.001087 16 α (N)=0.000926 14; α (O)=0.0001470 21; $\alpha(P)=1.463\times10^{-5}\ 21$ Mult.: $\alpha(K) \exp = 0.18$ 5. 247.2 1 1.60 23 750.33 503.23 + 264.2 1 544.53 280.33 1+,2+ 4.1 3 # 274.3[#] 4 1210.23? 935.59 280.3 1 35.9 8 280.33 $1^+, 2^+$ 0.0 1+ E2+M1 0.089 17 $\alpha(K)=0.072 \ 18; \ \alpha(L)=0.0129 \ 4;$ α(M)=0.00285 15; α(N+..)=0.00075 3 $\alpha(N)=0.00065 \ 3; \ \alpha(O)=9.82\times10^{-5} \ 14;$ $\alpha(P)=7.4\times10^{-6}\ 24$ Mult.: α (K)exp=0.060 6; δ >1.5 (from $\alpha(K)exp).$

Continued on next page (footnotes at end of table)

¹⁴²₆₃Eu₇₉-3

			142	$Gd \varepsilon dec$	ay <mark>1991</mark>	Fi03,19887	u03 (continue	1)		
γ ⁽¹⁴² Eu) (continued)										
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. ^{&}	α^{\dagger}	Comments		
284.4 1	55.0 15	284.26	0+,1+,2+	0.0	1+	M1	0.1014	$\frac{\alpha(K)=0.0860 \ 12; \ \alpha(L)=0.01205 \ 17;}{\alpha(M)=0.00260 \ 4; \ \alpha(N+)=0.000699}$ $\frac{10}{\alpha(N)=0.000595 \ 9; \ \alpha(O)=9.46\times10^{-5}$ $\frac{14}{\alpha(D)}=0.000595 \ 9; \ \alpha(O)=9.46\times10^{-5}$		
206.0.1	725	501.22		284.26	0+ 1+ 2+			Mult.: $\alpha(K) \exp[=0.083 \ 9, \ K/L=9.2 \ 23.$		
300.9 <i>I</i> 330.4 <i>I</i>	7.2 3 2.9 5	614.52	+	284.26 284.26	$0^+, 1^+, 2^+$ $0^+, 1^+, 2^+$					
335 [@] 1	≈2	614.52	+	280.33	1+,2+					
336 ^{°°} 1 347.6 1 ^x 375.4 1	≈ 0.5 4.0 6 2.5 3	619.72 526.30	+	284.26 178.87	$0^+, 1^+, 2^+$ (2) ⁻					
407.0 <i>1</i> 448.2 <i>1</i>	4.8 <i>4</i> 1.8 <i>4</i>	585.84 732.07		178.87 284.26	$(2)^{-}$ 0 ⁺ ,1 ⁺ ,2 ⁺					
466 [©] 1	~1	750.33		284.26	$0^+, 1^+, 2^+$ $1^+, 2^+$					
472 ⁻ 1 482.0 1 503.0 1	≈ 1 2.6 5 6.4 15	660.89 503.23	+	280.33 178.87 0.0	$(2)^{-}$ 1^{+}			I_{γ} : from level scheme (1991Fi03).		
526.2 1	52.7 15	526.30	+	0.0	1+	E2	0.01170	$\alpha(K)=0.00960 \ 14; \ \alpha(L)=0.001646 \ 23; \alpha(M)=0.000362 \ 5; \alpha(N+)=9.55 \times 10^{-5} \ 14 \alpha(N)=8.21 \times 10^{-5} \ 12; \alpha(O)=1.252 \times 10^{-5} \ 18; \alpha(P)=9.60 \times 10^{-7} \ 14 Mult.: \ \alpha(K)exp=0.010 \ 2.$		
550.6 1	6.4 7	550.60	+	0.0	1+	E2	0.01041	$\alpha(K)=0.00857 \ I2; \ \alpha(L)=0.001443 \ 21; \\ \alpha(M)=0.000317 \ 5; \\ \alpha(N+)=8.37\times10^{-5} \ I2 \\ \alpha(N)=7.19\times10^{-5} \ I0; \\ \alpha(O)=1.100\times10^{-5} \ I6; \\ \alpha(P)=8.60\times10^{-7} \ I2 \\ Mult.; \ \alpha(K)exp=0.011 \ 4.$		
553 [@] 1	≈5	732.07		178.87	(2) ⁻					
572 [@] 1	≈5 476	750.33		178.87	$(2)^{-}$					
591.3 <i>1</i>	9.8 7	591.23		0.0	1^{+}					
595.9 [#] 3 614.5 <i>1</i>	2.1 [#] 15 13.0 8	1210.23? 614.52	+	614.52 0.0	+ 1 ⁺	E2	0.00790 11	α =0.00790 11; α (K)=0.00655 10; α (L)=0.001060 15; α (M)=0.000232 4; α (N+)=6.15×10 ⁻⁵ 9 α (N)=5.27×10 ⁻⁵ 8; α (O)=8.11×10 ⁻⁶ 12; α (P)=6.63×10 ⁻⁷ 10 Mult: α (K)exp=0.007 2.		
619.7 <i>1</i> 631.7 <i>1</i> 651.3 <i>1</i> 660.9 <i>1</i> 704.9 <i>1</i> 732.4 <i>1</i> 750.2 <i>1</i> 821 [@] <i>1</i>	$18.3 89.5 82.9 44.3 57.9 225.1 47.2 7\approx 2$	619.72 631.70 935.59 660.89 704.93 732.07 750.33 1000.20		$\begin{array}{c} 0.0\\ 0.0\\ 284.26\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 178.87\end{array}$	$1^{+} \\ 1^{+} \\ 0^{+}, 1^{+}, 2^{+} \\ 1^{+} \\ 1^{+} \\ 1^{+} \\ 1^{+} \\ (2)^{-} $			Mult.: <i>a</i> (x)exp=0.007 2.		
823.9 <i>1</i> 853 [@] 1	10.8 25 ~1.1	1438.33		614.52	+					
055 - 1	≈1.1	1400.00		JOJ.04						

Continued on next page (footnotes at end of table)

				¹⁴² G	d ε decay	1991Fi03,1	988Tu03 (continued)				
			γ ⁽¹⁴² Eu) (continued)									
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	
862 [@] 1	≈3	1412.94		550.60	+	1259.6 <i>1</i>	38.2 15	1438.33		178.87	$(2)^{-}$	
^x 886.3 [#] 2	2.9 [#] 13					1275 [@] 1	≈2	1779.01		503.23	+	
910.0 <i>1</i>	2.4 5	1412.94		503.23	+	1302 [@] 1	≈3	1480.9		178.87	(2)-	
912.0 [#] 2	2.9 [#] 6	1438.33		526.30	+	1307 [@] 1	≈ 1	1485.9		178.87	(2) ⁻	
935.6 <i>1</i>	4.4 5	935.59		0.0	1+	1412.4 2	6.8 15	1412.94		0.0	1+	
1000.2 1	14 2	1000.20		0.0	1+	1438.4 2	11 4	1438.33		0.0	1+	
1073.6 [#] 4	#	1779.01		704.93		1495.0 2	5.9 15	1779.01		284.26	$0^+, 1^+, 2^+$	
1133 [@] 1	≈1.3	1412.94		280.33	$1^+, 2^+$	1599.7 2	18 <i>3</i>	1779.01		178.87	$(2)^{-}$	
1153.8 <i>1</i>	2.1 5	1438.33		284.26	$0^+, 1^+, 2^+$	1779.1 <i>1</i>	22.1 23	1779.01		0.0	1+	
1158 [@] 1	≈2	1779.01		619.72		1846.7 2	63	2025.59		178.87	$(2)^{-}$	
1187 [@] 1	≈6	1779.01		591.23		1948.6 <i>3</i>	94	1948.6		0.0	1+	
1204.4 <i>1</i>	4 2	1383.28		178.87	$(2)^{-}$	1956.6 <i>3</i>	73	1956.6		0.0	1+	
1233.9 <i>1</i>	15.0 8	1412.94		178.87	$(2)^{-}$	1982 [@] 1	≈2	2160.9		178.87	(2) ⁻	

[†] Additional information 1.
[‡] From 1991Fi03.
[#] From 1988Tu03.
[@] Observed only in coincidence (1991Fi03).
[&] α(K)exp were normalized to data on Iγ and ce(K) in ²⁰⁷Bi source as standard (1988Tu03).
^a For absolute intensity per 100 decays, multiply by 0.112 *11*.
^x γ ray not placed in level scheme.

¹⁴²Gd ε decay 1991Fi03,1988Tu03

¹⁴²Gd ε decay 1991Fi03,1988Tu03

¹⁴²Gd ε decay 1991Fi03,1988Tu03

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

¹⁴²₆₃Eu₇₉