142 Xe β^- decay 1974WrZY

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli	NDS 112, 1949 (2011)	1-Jun-2010				

Parent: ¹⁴²Xe: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=1.23$ s 2; $Q(\beta^-)=5.286$ 11; % β^- decay=100.0

Measured: γ, γγ (1974WrZY) semi, γ (1979Bo26) cryst, βγ (1973Ad04,1978Wo15); others: 1972Ho08, 1971Kr22, 1971La04, 1969WiZX, 1968Al06.

Decay scheme is as proposed by 1974WrZY.

Measured I β (657 level)/I β (1195 level)=81/19 ($\beta\gamma$) (1972AdZP).

Delayed neutron emission probability=0.406% *34* (1975As05); other: 0.45% *8* (1969Ta04); see also 1982Ru01, 1974CrZT, 1975Iz03, 1977Sh01.

¹⁴²Cs Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	E(level) [‡]	E(level) [‡]
0.0	0-	1.70 s 2	597.64 10	1089.55 10
12.33 4			599.95 16	1195.26 7
38.84 4			657.00 4	1312.37 5
70.36 15			718.74 9	1614.06 9
85.38 4			732.42 6	1875.61 <i>12</i>
203.40 4			756.92 10	1961.08 <i>14</i>
209.51 4			776.45 11	1984.34 24
242.87 4			886.52 14	2095.3? 6
250.59 7			944.16 5	2281.4? 6
304.23 6			1066.58? 16	2499.80 13
418.76 9			1068.15 <i>16</i>	

[†] From Adopted Levels.

[‡] From least-squares fit to $E\gamma$'s. Uncertainties of several $E\gamma$'s adjusted by evaluators to perform fit.

β^{-} radiations

E(decay)	E(level)
3.7×10 ³ 1	1195.26
$4.2 \times 10^3 l$	657.00

$\gamma(^{142}Cs)$

Normalization was not calculated since g.s. feeding is unknown and there are many highly converted gamma rays with unknown multipolarity.

Eγ	I_{γ}	E_i (level)	$E_f J_f^{\pi}$	Eγ	I_{γ}	E_i (level)	$E_f J_f^{\pi}$
(12.9)	<1.5	12.33	0.0 0-	(57.50 [@])	<0.14 [@] †	657.00	599.95
19.77 13	32 9	776.45	756.92	70.1 4	24 10	70.36	$0.0 0^{-}$
^x 20.80 8	135 12			72.86 12	274 17	85.38	12.33
^x 23.95 4	40 12			94.6 <i>3</i>	15 9	304.23	209.51
(33.0)	< 0.3	242.87	209.51	100.8 [@] 6	3.7 ^{@†} 12	304.23	203.40
38.83 <mark>&</mark> 7	22 & † 3	38.84	$0.0 0^{-}$	100.8 [@] 6	3.7 ^{@†} 12	756.92	657.00
38.83 <mark>&</mark> 40	233 <mark>&†</mark> 17	242.87	203.40	105.61 24	20 3	1195.26	1089.55
46.13 20	50 8	85.38	38.84	^x 113.36 25	18 <i>3</i>		
(57.50 [@])	<0.14 ^{@†}	70.36	12.33	^x 117.5 3	23 5		

Continued on next page (footnotes at end of table)

142 Xe β^- decay	1974WrZY (continued)

				$\gamma(^{142}Cs)$ (conti	inued)			
Eγ	I_{γ}	E_i (level)	$E_f J_f^{\pi}$	Eγ	I_{γ}	E _i (level)	E_f	\mathbf{J}_{f}^{π}
119.9 <i>4</i> 124.52 25	25 <i>4</i> 86 <i>1</i> 8	776.45 209.51	657.00 85.38	$618.06^{\ddagger\#} 7$ $x^{x}627.4 19$	721 <i>41</i> 8 <i>11</i>	657.00	38.84	
$157.485^{\ddagger} 7$	174 11	242.87	85.38	644.80 7 657.05.6	633 <i>35</i> 791 <i>41</i>	657.00 657.00	12.33	0-
164.563^{\ddagger} 7	218 13	203 40	38 84	661.9.5	30.8	732.42	70.36	0
167.4 6	17 6	944.16	776.45	^x 664.58 11	168 12	752.12	10.50	
170.677 [‡] 7	15 4	209.51	38.84	^x 669.1 4	28 6			
191.069 [‡] 7	357 20	203.40	12.33	672.20 40	74 7	756.92	85.38	
197.44 14	68 8	209.51	12.33	693.60 <i>10</i>	52 <i>4</i>	732.42	38.84	
$203.79\ 20$	2/6 14	203.40	0.0 0	$^{*}/09.13$	20.5	710 74	0.0	0-
204.034* 6	645 29	242.87	38.84	$718.2^{\circ} 4$	$7.1^{\circ} + 24$	/18./4	0.0	0
211./4	39 9 54 10	250.59	38.84 85.38	718.2 4	13.6	/56.92	38.84	
x239.5 4	40 12	504.25	05.50	x727.1 4	19 6			
242.8 6	27 13	242.87	$0.0 0^{-}$	^x 735.5 4	64 14			
250.68 9	320 22	250.59	$0.0 0^{-}$	737.37 17	126 17	776.45	38.84	
204.50	10 4	504.25 044.16	38.84 657.00	741.0 5	33 <i>3</i> 21 5	756 02	10.22	
291.95 7	171 9	944.10 304.23	12.33	^x 761.7 4	51 5 18 4	730.92	12.55	
304.3 4	18 5	304.23	0.0 0-	765.66 21	34 4	1961.08	1195.26	
^x 308.55 [‡] 7	272 15			776.05 20	28 4	776.45	0.0	0^{-}
312.99 35	31 5	732.42	418.76	^x 792.2 3	23 5	00 / 70		
x330.22 22	23 3			801.24 19	62 7 57 0	886.52	85.38	
x337.1.5	21.5			815.88.21	36.6	886.52	70.36	
349.0 3	58 12	599.95	250.59	x823.52 19	34 <i>4</i>	000.52	10.50	
352.74 [‡] 6	127 14	657.00	304.23	^x 829.7 4	13 4			
^x 373.4 5	94			862.90 21	27 4	1066.58?	203.40	
379.90 8	103 6	418.76	38.84	891.40 20	112 9	1195.26	304.23	
394.20 10 404 5 5	20 5	2499-80	203.40	x930 3 3	30 0 24 5	1984.54	1000.38?	
406.47 10	110 8	657.00	250.59	943.8 5	29 10	944.16	0.0	0^{-}
414.52 20	468 25	657.00	242.87	957.27 21	67 10	1614.06	657.00	
418.5 3	36 6	418.76	$0.0 0^{-}$	983.5 5	25 6	1068.15	85.38	
421.8 11	12 0	722 42	204.22	991.23 30	88 / 26 5	1195.20	203.40	
432.36.16	116 12	1089.55	504.25 657.00	x1020.2.3	26.5	1000.38?	70.50	
438.19 17	63 7	1195.26	756.92	1040.4 5	16 4	1984.34	944.16	
447.048 ^{‡#} 21	70 7	657.00	209.51	1068.3 <i>3</i>	27 5	1068.15	0.0	0^{-}
453.15 25	199 <i>12</i>	657.00	203.40	1089.7 5	13 4	1089.55	0.0	0-
468.17 ^{&} 7	203 * 12	718.74	250.59	1108.3 6	7.1 3	1312.37	203.40	
468.17 ^{&} 7	34 2	1068.15	599.95	1156.80 14	66 5	1875.61	718.74	
^497.5 3	23 5	1614.06	1080 55	*1164.72.22	31 4	1105.26	12 33	
538.24 7	769 41	1195.26	657.00	1185.3 4	58 6	2499.80	1312.35	
547.69 21	67 11	756.92	209.51	1195.4 3	45 7	1195.26	0.0	0^{-}
^x 557.82 19	75 9			1219.23 32	62 9	1875.61	657.00	
^x 562.2 4	25 7			1227.01 7	189 11	1312.37	85.38	
571.26 ⁺ 20	1000 52	657.00	85.38	⁴ 1232.99 <i>16</i>	48 5 77 6			
582.49.24	54 / 44 7	886 52	304.23	1300.09 6	306.16	1312.37	12.33	
587.1 4	30 8	657.00	70.36	1304.0 3	24 4	1961.08	657.00	
^x 605.56 8	220 14			1312.29 6	214 12	1312.37	0.0	0^{-}

Continued on next page (footnotes at end of table)

				142 Xe β^- d	ecay	1974WrZY	(continu	ied)
				$\gamma(^{142}\text{Cs})$ (continued)				
Eγ	I_{γ}	E _i (level)	\mathbf{E}_{f}	Eγ	I_{γ}	E _i (level)	E_f	\mathbf{J}_{f}^{π}
1338.3 ^{<i>a</i>} 3	29 6	2095.3?	756.92	1624.8 7	8 <i>3</i>	1875.61	250.59	
1363.3 <i>3</i>	18 4	1961.08	597.64	1632.9 4	14 4	1875.61	242.87	
1376.6 ^a 3	22 <i>3</i>	2095.3?	718.74	1710.9 <i>3</i>	21 4	1961.08	250.59	
1384.5 <i>4</i>	17 <i>3</i>	1984.34	599.95	1718.9 8	94	1961.08	242.87	
1395.0 ^a 3	17 <i>3</i>	2281.4?	886.52	^x 1773.3 7	13 5			
1410.60 10	59 <i>5</i>	1614.06	203.40	1781.7 4	17 6	2499.80	718.74	
1431.7 6	12 4	2499.80	1068.15	1789.5 8	11 4	1875.61	85.38	
1456.5 6	12 4	1875.61	418.76	1804.6 5	12 4	1875.61	70.36	
^x 1486.9 <i>10</i>	74			1837.1 5	19 5	1875.61	38.84	
^x 1511.7 8	73			1844.5 ^a 3	20 4	2095.3?	250.59	
^x 1520.4 5	12 <i>3</i>			1862.2 ^a 6	15 5	2281.4?	418.76	
^x 1595.1 5	14 4			1875.8 <i>5</i>	17 5	1875.61	0.0	0^{-}
1602.2 <i>3</i>	19 4	1614.06	12.33	1902.05 18	76 7	2499.80	597.64	
^x 1607.01 22	35 4			1972.1 <i>15</i>	65	1984.34	12.33	
^x 1616.3 6	10 <i>3</i>			2077.7 ^a 5	17 5	2281.4?	203.40	

[†] Intensity from γγ data.
[‡] From 1979Bo26.
[#] From 1974WrZY.
[@] Multiply placed with undivided intensity.
[&] Multiply placed with intensity suitably divided.
^a Placement of transition in the level scheme is uncertain.
^x γ ray not placed in level scheme.

¹⁴²Xe β^- decay 1974WrZY

1.70 s 2

¹⁴²Xe β^- decay 1974WrZY

$\frac{\text{Decay Scheme (continued)}}{\text{Intensities: Relative I}_{\gamma}}$

¹⁴²₅₅Cs₈₇

5

$\frac{142}{\mathbf{Xe}} \beta^{-} \mathbf{decay} \qquad \mathbf{1974WrZY}$

Decay Scheme (continued)

6