	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli	NDS 112,1949 (2011)	1-Jun-2010

 $Q(\beta^{-}) = -744.5 \ 24$; S(n)=7168.0 25; S(p)=8887 5; Q(α)=1304 3 2012Wa38

Note: Current evaluation has used the following Q record -744.3 247167.9 248887 5 1305 3 2011AuZZ.

 $Q(\beta^{-}n) = -6588.9 \ 24, \ Q(\varepsilon p) = -12102 \ 9 \ 2011AuZZ.$

Values in 2003Au03: $Q(\beta^{-})=745.8\ 24$, $S(n)=7169.7\ 24$, $S(p)=8889\ 5$, $Q(\alpha)=1298\ 3\ Q(\beta^{-}n)=-6588.9\ 24$, $Q(\varepsilon p)=-12102\ 9$. Some recent nuclear structure, Theory, Calculations:

2009Lo02, 2006Yu04, 2007Ji05, 1999Za09, 1998Ts05, 1995Zh26, 1992Wo11, 1992Na07, 1992Eg01, 1992Di01, 1992Co25, 1992Co21.

For recommended double beta-decay half-lives see compilation: 2010PrZZ.

See 1995Va25 for suggested configuration of states under various models.

¹⁴²Ce Levels

Cross Reference (XREF) Flags
-------------------	-------------

		A B	142 La β^- d 142 Pr ε dec	ecay E $^{142}Ce(n,n'\gamma)$ cay F $^{142}Ce(e,e')$
		C	Coulomb e	xcitation G 142 Ce(γ, γ')
		D	140 Ce(t,p)	$H = \frac{238}{U}(HI, x\gamma)$
E(level) [@]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments
0.0 ^{&}	0+	>5×10 ¹⁶ y	ABCDEFGH	T _{1/2} : Limit for 2β ⁻ decay from 1961Ma05. Others: >1×10 ¹⁶ y (1959Se49), 5.1×10 ¹⁵ y +51-25 (1957Ri43). 1957Ri43 report E(α)=1500 in ¹⁴² Ce α decay; however, 1959Se49 and 1961Ma05 did not observe any α's (Q(α)=1310 5). $\Delta < r^2 > (^{142}Ce, ^{144}Ce)=0.232 \ 20 \ fm^2$ (1999Is02), $\Delta < r^2 > (^{142}Ce, ^{140}Ce)=0.265 \ 12$ (1999GaZX).
641.282 ^{&} 9	2+	5.56 ps 12	ABCDEFGH	μ =+0.42 <i>10</i> (1991Ba38) Q: -0.16 <i>5</i> or -0.37 <i>5</i> (1988Ve08). Other: -0.12 <i>9</i> (1970En01). J ^{π} : L=2 in (t,p). T _{1/2} : from Coul ex.
1219.37 ^{&} 3	4+	7.5 ps 7	A CDEF H	J^{π} : From γ linear pol data (1992Al11). T _{1/2} : from Coul ex.
1536.33 4	2+	<0.83 ps	A C EF	J^{π} : E2 γ to g.s.
1652.91 4	3-†	>1.8 ps	A CDEF	J^{π} : L=3 in (t,p).
1742 <i>3</i>	5-		DF	J^{π} : L=(5) in (t,p), confirmed in (e,e').
1743.05 ^{&} 6	6+		ЕН	J^{π} : From γ linear pol data (1992Al11).
2004.89 7	2+	0.045 ps +5-4	A CDEF	J^{π} : L=2 in (t,p).
2014.5 3			Α	E(level): level not confirmed in $(n,n'\gamma)$ (1992Al11).
2031.01 9	$0^{+\dagger}$	0.17 ps +15-6	A E	
2044.51 6	4+†	0.33 ps +11-7	A DEF	J^{π} : from L(e,e').
2111.87 11	4 ^{+†}	0.37 ps +30-12	DE	
2124.91 8	5-†	>0.41 ps	DEF	J^{π} : from L(e,e').
2181.95 5	3+	0.26 ps + 55 - 11	A E	
2187.54 12	1-	0.011 ps 2	A DE G	J^{π} : E1 γ to g.s.
2210.60 ^a 6	6+		EF H	T _{1/2} : Others: 7.07 fs 28 from (γ, γ') . J ^{π} : from L(e,e'); consistent with γ linear pol data (1992Al11).
2278.14 8	4+†	0.083 ps +49-28	DEF	J^{π} : from L(e,e').
2329.88 10	3+	0.21 ps +21-8	Е	
2364.91 12	2^{+}	0.016 ps +3-2	A DEF	J^{π} : E2 γ to g.s.

Continued on next page (footnotes at end of table)

¹⁴²Ce Levels (continued)

E(level)	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	2	XREF	Comments
2374 96 8	+	>0.69 ps		F	I^{π} : suggested I=6 (1995Va25) is not consistent with D+O γ to 4 ⁺
2384 45 7	Δ^{-}	$0.060 \text{ ps} \pm 76 - 28$		F	
2308.42.7	1+	$0.000 \text{ ps} + 70^{-20}$ 0.076 ps $\pm 21 - 14$	Δ	FG	Two: Others: 49.9 fs 28 from (γ, γ')
2390.427	1	0.070 ps +21-14	л	ĽĠ	$J_{1/2}^{\pi}$. M1 γ to g.s.
2539.72 10	4 ^{+†}	0.041 ps +18-12		DE	
2542.65 19	1	<0.014 ps		Е	
2543.21 8	2+	0.21 ps + 25 - 8	Α	EF	
2570.08 11	5+	0.12 ps + 18-6		E	
2576.23 6	3+	>0.69 ps		Ē	
2591.0.3	6	, 0.0, po	Α	F	
2592.5.9	(7^{-})			н	I^{π} . From systematics of yeast levels of N=84 isotones
2508 27 10	2+1	> 1.66 mg			π , E2 α to α
2398.27 10	$(2, 2)^+$	>1.00 ps		E	J^{*} : E2 γ to g.s.
2002.55 0	(3,2)	0.24 ps + 23 - 8		DEF	
2606.49 8	4+1	0.049 ps +83–28		E	
2624.4 <mark>&</mark> 9	8+			Н	
2667.0 3	1^{+}	0.054 ps +24-15	Α	Е	J^{π} : M1 γ to g.s.
2680.50 20	$(2,3,4)^+$	0.15 ps + 15 - 6		Е	,
2697.03 7	2+	0.08 ps + 6 - 3	Α	EF	J^{π} : from L(e,e').
2698 58 11	4+1	$0.076 \text{ ps} \pm 21 - 15$		DF	
2010.30 11	3+	$0.12 \text{ ps} \pm 13 \pm 5$		F	
2715.147	5 5+	$0.12 \text{ ps} \pm 13 = 5$ 0.049 ps $\pm 26 \pm 16$		F	
2723.78 10	$2^{(-)}$	0.049 ps + 20 - 10		E E	
2121.897	$\frac{2}{(2,2)+}$	0.27 ps + 29 - 8	A	E	
2734.77 9	$(3,2)^+$	>0.57 ps		DE	
2/41.9/ 10	$(2,3)^+$	0.076 ps + 28 - 14	A	EF	$J^{\prime\prime}$: 1 in (e,e').
2707.80 8	$(1,2,3)^+$	0.055 ps + 18 - 12	A	EF	
2113.92.9	$(3)^{1}$	>0.69 ps		DE	
2784.78 21	(3,4,5)	0.23 ps +03-10		E	
2/92.9 3	· (+)		A		
2800.78 9	1(+)	0.010 ps 2	A	ΕG	J": MI γ to g.s. T _{1/2} : Others: 12.8 fs 5 from ($\gamma \gamma'$).
2806.42 9	3+	0.10 ps + 7 - 3		DE	
2842.56.12	$(2,3)^+$	0.038 ps + 10 - 8		E	
2853.34 12	2+	0.076 ps + 42 - 21		Ē	J^{π} : E2 γ to g.s.
$2857.6^{a}.7$	(8^+)			н	I^{π} . Band assignment
2859.75 10	4	>0.69 ps		DEF	
2868 97 10	$(4)^+$	>0.46 ps		F	
2887.74 15	3+	0.041 ps + 12 - 9		Ē	
2922.4	5	0.011 p5 112 9		ם ד	
2935 14 21	(2,3,4)	>0.48 ps		F	
2956 39 15	3+	0.017 ps + 7 - 6		Ē	
2986.5	5	0.017 p5 17 0			
2004 0 10	O(-)			ч	I^{π} . Stretched dipole to 8^+
2994.0 10	1+	$0.017 \text{ ps} \pm 13-8$	۵	DEEC	The contract of the second se
3000 00 20	1	$\sim 0.017 \text{ ps} + 15 - 0$	Δ	F	$1_{1/2}$. Outers. 14.0 is 14 from (γ, γ).
3011 03 20	1	-0.09 ps	А	E E C	Two: Others: 20.4 fs 7 from (a, a')
2042 20 15	1	0.010 ps ± 0.024		EG	$1_{1/2}$. Oulcis. 20.4 is 7 from (γ, γ).
2051 70 15	$(2)^{+}$	0.10 ps + 34 - 0		E	
2060.08.0	(3)	>0.09 ps		E	π , 2 ⁻ in (a a')
3000.98 9		0.09 ps +11-4	A	LL, D	J. J. III (C,C.).
3007 4	$(2 3)^+$	$0.058 \text{ m}_{\odot} + 20 = 17$		и Г	
2101 97 24	(2,3)	0.038 ps +29-17	٨	E	
3101.87 24	2+	$0.052 \text{ m}_{\odot} + 26 15$	A	F	
5100.04 <i>I</i> 5	3	0.055 ps + 20 - 15		E	
5109.79 <i>I</i> 5 2122 <i>A</i> 4		>0.09 ps		Ľ	
3122.4 4			A		

¹⁴²Ce Levels (continued)

E(level) [@]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	2	XREF		Comments				
3125.71 20	(1.2.3)	>0.65 ps		Е						
3144.57 15	3+	· ····· F·		E						
3153.76 14	2+	0.11 ps +15-5	Α	Е		J^{π} : E2 γ to g.s.				
3155.36 15		>0.69 ps		Ε		, .				
3164.7 5		•	Α	D						
3180.37 15	1	>0.69 ps	Α	Е						
3208.95 15	3+	0.043 ps +41-18		Ε						
3218.21 20		>0.69 ps		E						
3228.64 10	(5 ⁻)			DEF		J^{π} : (3 ⁻) in (n,n' γ) (1992A111).				
3300.74 21		>0.69 ps		E						
3304.5 6	2+		Α							
3313.78 20	1	13.3 fs 6	Α		G	J ^{π} : From angular distribution in (γ , γ').				
						$T_{1/2}$: From (γ, γ') .				
3380.5 ^{<i>u</i>} 10	(9+)				Н	J^{π} : Band assignment.				
3400.9 10	1	13.6 fs 5			G	J ^{<i>n</i>} : From angular distribution in (γ, γ') .				
3420.15 23	1-,2-		A							
3423.61 22			Α							
3436 4				D						
3459.91 21			A							
34/0.31 24	1	$22 f_{-} + 6 f_{-}$	A		c	IT From an entry distribution in (co.d)				
3313.1 / 2526.20 10	(10^{+})	55 IS +0-4			G	J ^{**} : From angular distribution in (γ, γ) .				
3530.5° 10 2612.5.2	(10^{-})			ъ	н	J [*] : Band assignment.				
3012.3 3	2 1	$26.7 f_0.21$	A	ע	c	$M_{\rm c}$ From angular distribution in (a,a')				
3033.37 22	1	50.7 18 21	A		G	J^{*} . From (<i>a</i> , <i>a</i> ')				
3643 5 10	1	15.2 fs 7			c	$1_{1/2}$. 110m (γ, γ).				
3648.6.4	1	13.2 18 7	Δ		G					
3675 8 5	1+		A							
3688.9.4	1		A							
3703.9.3			A							
3717.81 22	1+		A							
3719.6 4	1	40.9 fs 28	Α		G	J^{π} : From angular distribution in (γ, γ') .				
						$T_{1/2}$: From (γ, γ') .				
3732 4				D						
3745.8 10	1	37.4 fs 28			G					
3776.7 10	1	33.3 fs 28			G					
3832.6 12	$11^{(-)}$				Н	J^{π} : Stretched E2 to $9^{(-)}$.				
3851.1 6		22.2 fs 21	Α		G	J ^{π} : From angular distribution in (γ , γ').				
						$T_{1/2}$: From (γ, γ') .				
3884.2 5			Α							
3906.3 ^a 11	(11^{+})				Н	J^{π} : Band assignment.				
3914.4 5			Α							
3975.94 17			Α							
4043.5 4	2+		Α							
4045.6 4			Α							
4048.4 14	(10±)				H					
4336./ ⁴ 13	(12*)				Н	J [*] : Band assignment.				
4605.2 ⁰ 13	(13 ⁻)				Н	J^{n} : Band assignment.				
4717.2 14					Н					
4896.2 ^b 14	(14 ⁻)				Н	J^{π} : Band assignment.				
5173.4 ^b 14	(15^{-})				Н	J^{π} : Band assignment.				
5514.6 ^b 15	(16^{-})				н	I^{π} : Band assignment.				
5877 0b 16	(17^{-})				 U	IT: Rand assignment				
5011.2 10	(17)				п					

¹⁴²Ce Levels (continued)

E(level)	XREF			
6528.1 18	Н			
6879.9 <i>19</i>	Н			

[†] Consistent with γ linear pol data (1992A111).

[‡] From DSA in (n,n' γ), unless given otherwise. [#] Unless explicitly given, J^{π} are based on $\gamma(\theta)$ measurements of 1992Al11, 1995Va25 in (n,n' γ). Pure quadrupole transitions are taken to be E2 while significantly mixed D+Q transitions are assumed to be M1+E2. See 1992A111 for detailed arguments for many of the assignments.

[@] From least-squares fit to $E\gamma$.

& Band(A): g.s. band.

- ^a Band(A): g.s. band. ^a Band(B): Band based on 6⁺ state. Possible configuration= $(\pi g_{7/2}^1)(\pi d_{5/2}^1) \otimes (\nu f_{7/2}^2)$. ^b Band(C): $\Delta J=1$ band based on (13⁻). Possible configuration= $(\pi g_{7/2}^{-1})(\pi h_{11/2}^1) \otimes (\nu f_{7/2}^2)$ or $(\pi g_{7/2}^{-1})(\pi h_{11/2}^1) \otimes (\nu f_{7/2}^1)$

 $(\nu h_{9/2}^1).$

$\gamma(^{142}\text{Ce})$

Mostly data are from $(n,n'\gamma)$, ¹⁴²La β^- decay.

S

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{\dagger}	Comments
641.282	2+	641.285 9	100.0	0.0	0+	E2 [@]		0.00563 8	B(E2)(W.u.)=21.2 5 α (K)=0.00475 7; α (L)=0.000695 10; α (M)=0.0001463 21; α (N+)=3.77×10 ⁻⁵ 6
1219.37	4+	578.09 4	2.8 1	641.282	2+	E2		0.00733 11	$\begin{aligned} \alpha(N) &= 3.22 \times 10^{-5} 5; \ \alpha(O) &= 5.11 \times 10^{-6} 8; \ \alpha(P) &= 3.40 \times 10^{-7} 5 \\ E_{\gamma}: \ from \ 1979Bo26 \ (cryst). \\ B(E2)(W.u.) &= 26.4 \ 25 \\ \alpha(K) &= 0.00616 \ 9; \ \alpha(L) &= 0.000925 \ 13; \ \alpha(M) &= 0.000195 \ 3; \\ \alpha(N+) &= 5.02 \times 10^{-5} \ 7 \end{aligned}$
1536.33	2+	895.1 <i>I</i>	100.00	641.282	2+	M1+E2	-1.5 +6-13	0.0029 3	$\begin{aligned} &\alpha(N) = 4.30 \times 10^{-5} \ 6; \ \alpha(O) = 6.79 \times 10^{-6} \ 10; \ \alpha(P) = 4.38 \times 10^{-7} \ 7 \\ & E_{\gamma}: \text{ see } 1983Wo09. \\ & B(M1)(W.u.) > 0.0050; \ B(E2)(W.u.) > 14 \\ & \alpha(K) = 0.0025 \ 3; \ \alpha(L) = 0.00034 \ 3; \ \alpha(M) = 7.0 \times 10^{-5} \ 6; \\ & \alpha(N+) = 1.82 \times 10^{-5} \ 16 \end{aligned}$
		1537.4 2	1.010	0.0	0+	E2 [@]		0.000934 <i>13</i>	$\alpha(N)=1.55\times10^{-5} \ 14; \ \alpha(O)=2.50\times10^{-6} \ 23; \ \alpha(P)=1.85\times10^{-7} \ 22$ B(E2)(W.u.)>0.018 $\alpha(K)=0.000726 \ 11; \ \alpha(L)=9.30\times10^{-5} \ 13; \ \alpha(M)=1.93\times10^{-5} \ 3; \ \alpha(N+)=9.56\times10^{-5} \ 14$
1652.91	3-	433.2 1	14.94	1219.37	4+	E1 [#]		0.00501 7	$\begin{aligned} \alpha(N) &= 4.28 \times 10^{-5} \ 6; \ \alpha(O) &= 6.94 \times 10^{-7} \ 10; \ \alpha(P) &= 5.28 \times 10^{-5} \ 8; \\ \alpha(IPF) &= 9.06 \times 10^{-5} \ 13 \end{aligned}$ B(E1)(W.u.)<0.00022 $\alpha(K) &= 0.00431 \ 6; \ \alpha(L) &= 0.000555 \ 8; \ \alpha(M) &= 0.0001153 \ 17; \\ \alpha(N+) &= 2.99 \times 10^{-5} \ 5 \end{aligned}$
		1011.7 <i>1</i>	100.0	641.282	2+	E1 [#]		0.000827 12	$\begin{aligned} &\alpha(\text{N})=2.55\times10^{-5} \ 4; \ \alpha(\text{O})=4.09\times10^{-6} \ 6; \ \alpha(\text{P})=2.99\times10^{-7} \ 5 \\ &\text{B(E1)(W.u.)}<0.00012 \\ &\alpha(\text{K})=0.000715 \ 10; \ \alpha(\text{L})=8.90\times10^{-5} \ 13; \ \alpha(\text{M})=1.84\times10^{-5} \ 3; \\ &\alpha(\text{N}+)=4.80\times10^{-6} \ 7 \end{aligned}$
1743.05	6+	523.5 1	100.0	1219.37	4+	E2 [#]		0.00952 14	$\alpha(N)=4.08\times10^{-6} \ 6; \ \alpha(O)=6.62\times10^{-7} \ 10; \ \alpha(P)=5.08\times10^{-8} \ 8$ $\alpha(K)=0.00797 \ 12; \ \alpha(L)=0.001231 \ 18; \ \alpha(M)=0.000260 \ 4; \ \alpha(N+)=6.68\times10^{-5} \ 10 \ \alpha(N)=5.73\times10^{-5} \ 8; \ \alpha(O)=0.00\times10^{-6} \ 13; \ \alpha(P)=5.62\times10^{-7} \ 8$
2004.89	2+	352.1 <i>1</i> 1363.6 <i>1</i>	2.857 100.0	1652.91 641.282	3 ⁻ 2 ⁺	M1+E2	-0.26 +14-17	0.00144 4	B(M1)(W.u.)=0.127 17; B(E2)(W.u.)=3 3 α (K)=0.00121 4; α (L)=0.000154 5; α (M)=3.20×10 ⁻⁵ 9; α (N+)=4.42×10 ⁻⁵ 7

	Adopted Levels, Gammas (continued)											
							$\gamma(^{142}\text{Ce})$ (con	ntinued)				
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α^{\dagger}	Comments			
	_								B(M1)(W.u.)=0.127 <i>17</i> ; B(E2)(W.u.)=3 <i>3</i> α (K)=0.00121 <i>4</i> ; α (L)=0.000154 <i>5</i> ; α (M)=3.20×10 ⁻⁵ <i>9</i> ; α (N+)=4.42×10 ⁻⁵ <i>7</i> α (N)=7.10×10 ⁻⁶ <i>19</i> ; α (O)=1.16×10 ⁻⁶ <i>4</i> ; α (P)=9.0×10 ⁻⁸ <i>3</i> ; α (IPF)=3.59×10 ⁻⁵ <i>5</i>			
2004.89	2+	2004.9 2	40.00	0.0	0+	E2 [@]		0.000808 12	B(E2)(W.u.)=2.5 3 α (K)=0.000443 7; α (L)=5.56×10 ⁻⁵ 8; α (M)=1.154×10 ⁻⁵ 17; α (N+)=0.000298 5 α (N)=2.56×10 ⁻⁶ 4; α (O)=4.16×10 ⁻⁷ 6; α (P)=3.22×10 ⁻⁸ 5; α (IPF)=0.000295 5			
2014.5		1372.9 7 2014.1 <i>10</i>	$5.\times10^{1} 5$ 100.0	641.282 0.0	2^+ 0^+							
2031.01	0^{+}	1389.7 <i>1</i>	100.0	641.282	2+							
2044.51	4+	825.2 1	3.093	1219.37	4+	M1(+E2)	-0.06 +14-23	0.00457 13	B(M1)(W.u.)=0.0036 <i>12</i> α (K)=0.00393 <i>12</i> ; α (L)=0.000506 <i>13</i> ; α (M)=0.000105 <i>3</i> ; α (N+)=2.75×10 ⁻⁵ <i>7</i> α (N)=2.34×10 ⁻⁵ <i>6</i> ; α (O)=3.81×10 ⁻⁶ <i>10</i> ; α (P)=2.96×10 ⁻⁷ <i>9</i>			
		1403.0 <i>1</i>	100.00	641.282	2+	E2 [@]		0.001054 <i>15</i>	B(E2)(W.u.)=7.0 24 α (K)=0.000867 13; α (L)=0.0001117 16; α (M)=2.32×10 ⁻⁵ 4; α (N+)=5.25×10 ⁻⁵ α (N)=5.15×10 ⁻⁶ 8; α (O)=8.34×10 ⁻⁷ 12; α (P)=6.30×10 ⁻⁸ 9; α (PE)=4.65×10 ⁻⁵ 7			
2111.87	4+	892.5 1	100.0	1219.37	4+	M1+E2	-0.43 +4-9	0.00361 9	$B(M1)(W.u.)=0.07 \ 6; \ B(E2)(W.u.)=10 \ 8$ $\alpha(K)=0.00310 \ 8; \ \alpha(L)=0.000402 \ 9; \ \alpha(M)=8.36\times10^{-5} \ 19;$ $\alpha(N+)=2.18\times10^{-5} \ 5$ $\alpha(N)=1.86\times10^{-5} \ 4; \ \alpha(O)=3.02\times10^{-6} \ 7; \ \alpha(P)=2.32\times10^{-7} \ 6$			
2124.91	5-	381.8 <i>1</i>	11.25	1743.05	6+							
		471 ^{&} 1	12.50	1652.91	3-	0						
	24	905.6 1	100.0	1219.37	4+	E1 [@]		0.001021 <i>15</i>	B(E1)(W.u.)<0.00066 α (K)=0.000882 <i>13</i> ; α (L)=0.0001103 <i>16</i> ; α (M)=2.29×10 ⁻⁵ <i>4</i> ; α (N+)=5.95×10 ⁻⁶ α (N)=5.06×10 ⁻⁶ 7; α (O)=8.20×10 ⁻⁷ <i>12</i> ; α (P)=6.26×10 ⁻⁸ 9			
2181.95	3+	528.7 <i>1</i> 645.6 <i>1</i>	8.696 26.09	1652.91 1536.33	3 ⁻ 2 ⁺	M1+E2	-0.40 +8-11	0.00789 22	B(M1)(W.u.)=0.03 +7-3; B(E2)(W.u.)=7 +16-7 α (K)=0.00676 19; α (L)=0.000889 21; α (M)=0.000185 5; α (N+)=4.83×10 ⁻⁵ 12 α (N)=4.11×10 ⁻⁵ 10; α (Q)=6.67×10 ⁻⁶ 16; α (P)=5.00×10 ⁻⁷ 16			
		962.5 1	100.0	1219.37	4+	M1(+E2)	-0.5 +15-17	0.0030 7	B(M1)(W.u.)=0.03 + 9 - 3			

 $^{142}_{58}\mathrm{Ce}_{84}$ -6

	Adopted Levels, Gammas (continued)											
							$\gamma(^{142}\text{Ce})$ (continued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{\dagger}	Comments			
2181.95	3+	1540.9 <i>1</i>	84.78	641.282	2+	M1+E2	+0.09 +4-3	0.001180 17	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0026 \ 6; \ \alpha(\mathbf{L}) = 0.00033 \ 7; \ \alpha(\mathbf{M}) = 6.9 \times 10^{-5} \ 13; \\ &\alpha(\mathbf{N}+) = 1.8 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{N}) = 1.5 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) = 2.5 \times 10^{-6} \ 5; \ \alpha(\mathbf{P}) = 1.9 \times 10^{-7} \ 5 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.009 \ + 19 - 9; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 0.02 \ + 4 - 2 \\ &\alpha(\mathbf{K}) = 0.000936 \ 14; \ \alpha(\mathbf{L}) = 0.0001184 \ 17; \ \alpha(\mathbf{M}) = 2.46 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{N}+) = 0.000100 \\ &\alpha(\mathbf{N}) = 5.46 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 8.90 \times 10^{-7} \ 13; \ \alpha(\mathbf{P}) = 6.98 \times 10^{-8} \ 10; \end{aligned}$			
2187.54	1-	534 ^{&} 1 1546.3 2	<0.5172 70.69	1652.91 641.282	3 ⁻ 2 ⁺	E1		0.000640 9	$\alpha(\text{IPF})=9.42\times10^{-5} \ 14$ B(E1)(W.u.)=0.0025 5 $\alpha(\text{K})=0.000337 \ 5; \ \alpha(\text{L})=4.15\times10^{-5} \ 6; \ \alpha(\text{M})=8.58\times10^{-6} \ 12; \ \alpha(\text{N}+)=0.000253 \ 4$ $\alpha(\text{N})=1.90\times10^{-6} \ 3; \ \alpha(\text{O})=3.09\times10^{-7} \ 5; \ \alpha(\text{P})=2.41\times10^{-8} \ 4; \ \alpha(\text{P})=0.000250 \ 4$			
		2187.4 2	100.0	0.0	0+	E1 [@]		0.000941 14	$\begin{aligned} &\alpha(\text{IPF}) = 0.000250\ 4\\ &\text{I}_{\gamma}:\ 63\ 2\ from\ (\gamma,\gamma').\\ &\text{B(E1)(W.u.)} = 0.00126\ 23\\ &\alpha(\text{K}) = 0.000193\ 3;\ \alpha(\text{L}) = 2.35 \times 10^{-5}\ 4;\ \alpha(\text{M}) = 4.86 \times 10^{-6}\ 7;\\ &\alpha(\text{N}+) = 0.000719\ 10\\ &\alpha(\text{N}) = 1.079 \times 10^{-6}\ 16;\ \alpha(\text{O}) = 1.757 \times 10^{-7}\ 25;\ \alpha(\text{P}) = 1.377 \times 10^{-8} \end{aligned}$			
2210.60	6+	467.55 2 991.21 6	100 20	1743.05 1219.37	6 ⁺ 4 ⁺	E2		0.00206 3	20; α (IPF)=0.000718 <i>10</i> α (K)=0.001757 <i>25</i> ; α (L)=0.000236 <i>4</i> ; α (M)=4.93×10 ⁻⁵ <i>7</i> ; α (N+)=1.279×10 ⁻⁵ <i>18</i> α (N)=1.091×10 ⁻⁵ <i>16</i> ; α (O)=1.754×10 ⁻⁶ <i>25</i> ; α (P)=1.274×10 ⁻⁷ <i>18</i> E _Y : Not seen in (HI,xy) (2007Ve14). Authors suggest Branching			
2278.14	4+	1058.5 <i>1</i>	40.85	1219.37	4+	M1+E2	2.1 +18-3	0.00193 10	to be <5%. B(M1)(W.u.)=0.012 +19-12; B(E2)(W.u.)=28 19 α (K)=0.00165 9; α (L)=0.000218 10; α (M)=4.54×10 ⁻⁵ 21; α (N+)=1.18×10 ⁻⁵ 6			
		1636.8 2	100.0	641.282	2+	E2 [@]		0.000878 13	$\alpha(N)=1.01\times10^{-3} 5; \ \alpha(O)=1.62\times10^{-6} 8; \ \alpha(P)=1.21\times10^{-7} 7$ $B(E2)(W.u.)=9 6$ $\alpha(K)=0.000645 9; \ \alpha(L)=8.21\times10^{-5} 12; \ \alpha(M)=1.706\times10^{-5} 24; \ \alpha(N+)=0.0001335$ $\alpha(N)=3.78\times10^{-6} 6; \ \alpha(Q)=6.14\times10^{-7} Q; \ \alpha(P)=4.69\times10^{-8} 7;$			
2329.88	3+	793.4 1	42.86	1536.33	2+	M1+E2	0.37 +23-18	0.00483 25	$\begin{array}{l} \alpha(17)=5.7810 0, \ \alpha(0)=0.1410 9, \ \alpha(17)=4.09\times10 7, \\ \alpha(1PF)=0.0001290 \ 18 \\ B(M1)(W.u.)=0.06 \ 6; \ B(E2)(W.u.)=7 \ +11-7 \\ \alpha(K)=0.00415 \ 22; \ \alpha(L)=0.000538 \ 24; \ \alpha(M)=0.000112 \ 5; \end{array}$			

1		Adopted Levels, Gammas (continued)												
								$\gamma(^{142}\text{Ce})$	(continued)					
	E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α^{\dagger}	Comments				
	2329.88	3+	1689.2 2	100.0	641.282	2+	M1+E2	-0.16 13	0.001040 18	$\begin{aligned} &\alpha(\mathrm{N}+)=2.92\times10^{-5}\ 13\\ &\alpha(\mathrm{N})=2.49\times10^{-5}\ 11;\ \alpha(\mathrm{O})=4.04\times10^{-6}\ 19;\ \alpha(\mathrm{P})=3.11\times10^{-7}\ 18\\ &\mathrm{B}(\mathrm{M}1)(\mathrm{W.u.})=0.015\ 15;\ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.})=0.08\ +15-8\\ &\alpha(\mathrm{K})=0.000762\ 14;\ \alpha(\mathrm{L})=9.61\times10^{-5}\ 17;\ \alpha(\mathrm{M})=2.00\times10^{-5}\ 4;\\ &\alpha(\mathrm{N}+)=0.0001619\\ &\alpha(\mathrm{N})=4.43\times10^{-6}\ 8;\ \alpha(\mathrm{O})=7.22\times10^{-7}\ 13;\ \alpha(\mathrm{P})=5.67\times10^{-8}\ 11;\end{aligned}$				
	2364.91	2+	350.3 <i>3</i> 1723.6 2	<3 100.0	2014.5 641.282	2+	M1(+E2)	-0.03 +9-10	0.001022 15	α (IPF)=0.0001567 23 B(M1)(W.u.)=0.20 4 α (K)=0.000733 11; α (L)=9.23×10 ⁻⁵ 14; α (M)=1.92×10 ⁻⁵ 3; α (N+)=0.0001777 α (N+)=0.0001777				
			2364.8 2	31.58	0.0	0+	E2		0.000848 12	$\alpha(N)=4.26\times10^{\circ} 7; \alpha(O)=6.94\times10^{\circ} 70; \alpha(P)=5.46\times10^{\circ} 8; \alpha(IPF)=0.0001727 25$ B(E2)(W.u.)=2.6 5 $\alpha(K)=0.000329 5; \alpha(L)=4.10\times10^{-5} 6; \alpha(M)=8.49\times10^{-6} 12; \alpha(N+)=0.000470 7$				
	2374.96	+	631.8 <i>1</i>	92.3	1743.05	6+	M1+E2	<-1.5	0.0077 10	$\alpha(N)=1.88 \times 10^{-6} 3; \alpha(O)=3.07 \times 10^{-7} 5; \alpha(P)=2.39 \times 10^{-8} 4; \alpha(IPF)=0.000468 7$ B(E2)(W.u.)<62 $\alpha(K)=0.0066 9; \alpha(L)=0.00089 9; \alpha(M)=0.000185 18; \alpha(N+)=4.8 \times 10^{-5} 5$				
			1155.7 <i>1</i>	100.0	1219.37	4+	M1+E2	-0.09 +6-11	0.00208 4	$\alpha(N)=4.1\times10^{-5} 4; \ \alpha(O)=6.6\times10^{-6} 7; \ \alpha(P)=4.9\times10^{-7} 8$ B(M1)(W.u.)<0.011; B(E2)(W.u.)<0.088 $\alpha(K)=0.00179 3; \ \alpha(L)=0.000228 4; \ \alpha(M)=4.74\times10^{-5} 8; \ \alpha(N+)=1.460\times10^{-5} 23$				
	2384.45	4-	202.3 <i>l</i> 731.5 <i>l</i>	6.329 100.0	2181.95 1652.91	3+ 3-	M1+E2	-0.8 +3-4	0.0053 5	$\alpha(N)=1.053\times10^{-5} 17; \ \alpha(O)=1.72\times10^{-6} 3; \ \alpha(P)=1.341\times10^{-7} 23; \ \alpha(IPF)=2.22\times10^{-6} 4$ B(M1)(W.u.)=0.5 +6-5; B(E2)(W.u.)=3.E+2 +5-3 $\alpha(K)=0.0046 4; \ \alpha(L)=0.00061 4; \ \alpha(M)=0.000126 8; \ \alpha(N+)=3.29\times10^{-5} 21$ (N)= 2.80×10^{-5} 21 (N)= 2.80×10^{-5} 18; (O)=4.5×10^{-6} 2; \ \alpha(D)=2.4\times10^{-7} 2				
	2398.42	1+	1165.3 <i>1</i> 367.3 2 393.6 2	20.25 1.0 1.4	1219.37 2031.01 2004.89	4^+ 0^+ 2^+ 2^+		0.02 5	0.00412.5	$a(11)=2.00\times10^{-10}; a(0)=4.5\times10^{-5}; a(1)=5.4\times10^{-5}$				
			862.1 <i>1</i>	10.26	1536.33	2*	M1(+E2)	0.03 5	0.00412 6	B(M1)(W.u.)=0.035 10 α (K)=0.00355 5; α (L)=0.000456 7; α (M)=9.50×10 ⁻⁵ 14; α (N+)=2.48×10 ⁻⁵ 4 α (N)=2.11×10 ⁻⁵ 3; α (Q)=3.43×10 ⁻⁶ 5; α (P)=2.67×10 ⁻⁷ 4				
			1757.1 <i>1</i>	17.95	641.282	2+	M1+E2	-1.6 +3-4	0.000882 20	$B(M1)(W.u.)=0.0021 \ 8; \ B(E2)(W.u.)=1.0 \ 3$				
ļ														

 ∞

	Adopted Levels, Gammas (continued)												
	$\gamma(^{142}\text{Ce})$ (continued)												
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α^{\dagger}	Comments				
	_				<u></u>				$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000603 \ 16; \ \alpha(\mathrm{L}) = 7.63 \times 10^{-5} \ 19; \ \alpha(\mathrm{M}) = 1.58 \times 10^{-5} \ 4; \\ \alpha(\mathrm{N}+) = 0.000187 \ 3 \\ \alpha(\mathrm{N}) = 3.51 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 5.71 \times 10^{-7} \ 15; \ \alpha(\mathrm{P}) = 4.42 \times 10^{-8} \ 12; \\ \alpha(\mathrm{IPF}) = 0.000183 \ 3 \end{array} $				
2398.42	1+	2398.5 2	100.0	0.0	0+	M1 [@]		0.000934 <i>13</i>	B(M1)(W.u.)=0.016 5 α (K)=0.000361 5; α (L)=4.51×10 ⁻⁵ 7; α (M)=9.36×10 ⁻⁶ 14; α (N+)=0.000519 8 α (N)=2.08×10 ⁻⁶ 3; α (O)=3.39×10 ⁻⁷ 5; α (P)=2.67×10 ⁻⁸ 4; α (PE)=0.000516 8				
2539.72	4+	358.7 ^{&} 1	100.0	2181.95	3+	(M1+E2)	-0.5859	0.0341	B(M1)(W.u.)=6 3 $\alpha(K)=0.0289 4; \ \alpha(L)=0.00409 \ 6; \ \alpha(M)=0.000860 \ 12;$ $\alpha(N+)=0.000223 4$ $\alpha(N)=0.000190 \ 3; \ \alpha(O)=3.05\times10^{-5} 5; \ \alpha(P)=2.16\times10^{-6} \ 3$				
		1320.3 <i>1</i>	26.87	1219.37	4+	E2 [#]		0.001162 <i>17</i>	B(E2)(W.u.)=14 7 α (K)=0.000976 14; α (L)=0.0001266 18; α (M)=2.64×10 ⁻⁵ 4; α (N+)=3.22×10 ⁻⁵ α (N)=5.84×10 ⁻⁶ 9; α (O)=9.44×10 ⁻⁷ 14; α (P)=7.10×10 ⁻⁸ 10; α (IPF)=2.54×10 ⁻⁵ 4				
		1898.6 2	20.90	641.282	2+	E2 [@]		0.000812 12	B(E2)(W.u.)=1.8 8 α (K)=0.000489 7; α (L)=6.16×10 ⁻⁵ 9; α (M)=1.279×10 ⁻⁵ 18; α (N+)=0.000248 4 α (N)=2.84×10 ⁻⁶ 4; α (O)=4.61×10 ⁻⁷ 7; α (P)=3.56×10 ⁻⁸ 5; α (IPF)=0.000245 4				
2542.65 2543.21	1 2 ⁺	2542.8 2 178.3 3 355.3 3 538.3 5 1006.7 2	100.0 1.9 5 <0.5 0.5 2.4	0.0 2364.91 2187.54 2004.89 1536.33	0^+ 2^+ 1^- 2^+ 2^+ 2^+								
		1323.9 1	50	1219.37	4+	E2		0.001156 <i>17</i>	B(E2)(W.u.)=3 +4-3 $\alpha(K)=0.000971 \ 14; \ \alpha(L)=0.0001259 \ 18; \ \alpha(M)=2.62\times10^{-5} \ 4; \ \alpha(N+)=3.30\times10^{-5}$ $\alpha(N)=5.81\times10^{-6} \ 9; \ \alpha(O)=9.39\times10^{-7} \ 14; \ \alpha(P)=7.06\times10^{-8} \ 10; \ \alpha(PF)=2.61\times10^{-5} \ 4$ Mult : from $\gamma\gamma(\theta)$ (1983W009 1990La04).				
		1902.1 2	67.4	641.282	2+	M1+E2	+0.65 5	0.000905 14	B(M1)(W.u.)=0.003 3; B(E2)(W.u.)=0.2 +3-2 α (K)=0.000560 9; α (L)=7.05×10 ⁻⁵ 11; α (M)=1.463×10 ⁻⁵ 23; α (N+)=0.000259 α (N)=3.25×10 ⁻⁶ 5; α (O)=5.29×10 ⁻⁷ 8; α (P)=4.14×10 ⁻⁸ 7;				

	Adopted Levels, Gammas (continued)											
							$\gamma(^{142}\text{Ce})$ (e	continued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α^{\dagger}	Comments			
									α (IPF)=0.000255 4 δ : +0.55 +40-54 (1983Wo09). Other: +0.71 7 (1977CoZO); data of 1982Mi01 and 1975Ba15 are not consistent with J=2, data of 1983Wo09 agree better with J=1 or 30.19 +14-10 in (n,n' γ).			
2543.21	2^{+}	2543.1 2	100.0	0.0	0^{+}							
2570.08	5+	827.4 ^{&} 1	14.94	1743.05	6+	(M1+E2)	-0.5 +21-3	0.0042 8	B(M1)(W.u.)=0.03 +8-3; B(E2)(W.u.)=1.E+1 +5-1 α (K)=0.0036 7; α (L)=0.00048 8; α (M)=9.9×10 ⁻⁵ 16; α (N)=2.6×10 ⁻⁵ 4 α (N)=2.6×10 ⁻⁵ 4; α (O)=3.6×10 ⁻⁶ 6; α (P)=2.7×10 ⁻⁷ 6			
		1350.7 <i>1</i>	100.0	1219.37	4+	M1+E2	-0.6 +16-10	0.00139 <i>18</i>	$\begin{array}{l} a(N)=2.2\times10^{-4}, a(O)=3.0\times10^{-6}, a(1)=2.7\times10^{-6}, 0^{-6}\\ B(M1)(W.u.)=0.05 + 10-5; B(E2)(W.u.)=5 + 23-5\\ \alpha(K)=0.00117 \ 15; \alpha(L)=0.000149 \ 18; \alpha(M)=3.1\times10^{-5} \ 4;\\ \alpha(N+)=4.06\times10^{-5} \ 12\\ \alpha(N)=6.9\times10^{-6} \ 9; \alpha(O)=1.12\times10^{-6} \ 14; \alpha(P)=8.7\times10^{-8} \ 12;\\ \alpha(IPE)=3.25\times10^{-5} \ 5 \end{array}$			
2576.23	3+	297.8 1	48.39	2278.14	4+	M1+E2	1.1 +6-4	0.0539 21	B(M1)(W.u.)<0.13; B(E2)(W.u.)<9.7×10 ² α (K)=0.0446 24; α (L)=0.0073 3; α (M)=0.00155 7; α (N+)=0.000396 14 α (N)=0.000340 13; α (O)=5.31×10 ⁻⁵ 13; α (P)=3.2×10 ⁻⁶ 3			
		394.0 ^{&} 1	61.29	2181.95	3+	(M1+E2)	0.5 +5-4	0.0270 22	B(M1)(W.u.)<0.11; B(E2)(W.u.)<1.9×10 ² $\alpha(K)=0.0230\ 21;\ \alpha(L)=0.00317\ 9;\ \alpha(M)=0.000664\ 15;\ \alpha(N+)=0.000172\ 5$			
		531.9 <i>1</i>	100.0	2044.51	4+	M1(+E2)	0.00 +6-9	0.01331	$\begin{aligned} \alpha(N) &= 0.000147 4; \ \alpha(O) &= 2.36\times10^{-9}; \ \alpha(P) &= 1.72\times10^{-2}20 \\ B(M1)(W.u.) &< 0.065 \\ \alpha(K) &= 0.01143 \ 16; \ \alpha(L) &= 0.001494 \ 21; \ \alpha(M) &= 0.000311 \ 5; \\ \alpha(N+) &= 8.12\times10^{-5} \ 12 \\ \alpha(N) &= 6.91\times10^{-5} \ 10; \ \alpha(O) &= 1.124\times10^{-5} \ 16; \ \alpha(P) &= 8.67\times10^{-7} \ 13 \end{aligned}$			
		923.4 1	38.71	1652.91	3-				$u(1) = 0.91 \times 10^{-1.124 \times 10} = 10, u(1) = 0.07 \times 10^{-1.124} \times 10^{-1.124} \times 10^{-10}, u(1) = 0.07 \times 10^{-1.124} \times 10^{-1.12$			
		1039.9 1	77.42	1536.33	2+	M1+E2	-0.8 +4-7	0.00234 25	B(M1)(W.u.)<0.0057; B(E2)(W.u.)<2.3 α (K)=0.00201 22; α (L)=0.000261 25; α (M)=5.4×10 ⁻⁵ 5; α (N+)=1.42×10 ⁻⁵ 14 α (N)=1.21×10 ⁻⁵ 12; α (Q)=1.96×10 ⁻⁶ 19; α (P)=1.50×10 ⁻⁷ 18			
2591.0 2592.5	(7^{-})	1949.4 9 2590.6 10 849.5	100 <i>13</i> 37.50 100.0	641.282 0.0 1743.05	2^+ 0^+ 6^+ 2^+	M1+52		0.00048.5	$u(1) = 1.21 \times 10 12, \ u(0) = 1.30 \times 10 13, \ u(1) = 1.30 \times 10 10$			
2598.27	2*	1062.0 1	100.0	1536.33	2*	M1+E2	-0.26 +11-7	0.00248-5	B(M1)(w.u.)<0.0059; B(E2)(w.u.)<0.35 $\alpha(K)=0.00214 \ 4; \ \alpha(L)=0.000274 \ 5; \ \alpha(M)=5.69\times10^{-5} \ 11; \ \alpha(N+)=1.49\times10^{-5} \ 3$ $\alpha(N)=1.264\times10^{-5} \ 23; \ \alpha(O)=2.06\times10^{-6} \ 4; \ \alpha(P)=1.60\times10^{-7} \ 4$			

From ENSDF

L

10

	Adopted Levels, Gammas (continued)												
							γ ⁽¹⁴² Ce) (c	ontinued)					
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{\dagger}	Comments				
2598.27	2+	2598.0 2	85.19	0.0	0+	E2 [@]		0.000899 13	B(E2)(W.u.)<0.030 α (K)=0.000278 4; α (L)=3.45×10 ⁻⁵ 5; α (M)=7.16×10 ⁻⁶ 10; α (N+)=0.000579 9 α (N)=1.588×10 ⁻⁶ 23; α (O)=2.59×10 ⁻⁷ 4; α (P)=2.02×10 ⁻⁸ 3; α (IPF)=0.000577 8				
2602.55	(3,2)+	557.7 <i>1</i> 1066.1 2	19.12 <5.882	2044.51 1536.33	4+ 2+	(M1+E2)	1.2 +23-7	0.0021 3	B(M1)(W.u.)=0.0006 +17-6; B(E2)(W.u.)=0.5 +10-5 α (K)=0.0018 3; α (L)=0.00023 3; α (M)=4.8×10 ⁻⁵ 7; α (N+)=1.25×10 ⁻⁵ 17				
		1383.3 <i>1</i>	22.06	1219.37	4+	M1+E2	1.1 +6-4 0.00123 8		$\begin{aligned} \alpha(N) &= 1.07 \times 10^{-5} \ 14; \ \alpha(O) &= 1.73 \times 10^{-6} \ 23; \ \alpha(P) &= 1.31 \times 10^{-7} \ 21 \\ B(M1)(W.u.) &= 0.002 \ +3 - 2; \ B(E2)(W.u.) &= 0.9 \ +11 - 9 \\ \alpha(K) &= 0.00103 \ 7; \ \alpha(L) &= 0.000131 \ 9; \ \alpha(M) &= 2.73 \times 10^{-5} \ 17; \\ \alpha(N+) &= 4.82 \times 10^{-5} \ 9 \\ \alpha(N) &= 6.1 \times 10^{-6} \ 4; \ \alpha(O) &= 9.8 \times 10^{-7} \ 7; \ \alpha(P) &= 7.6 \times 10^{-8} \ 6; \end{aligned}$				
		1961.5 <i>1</i>	100.0	641.282	2+	M1(+E2)	0.03 3	0.000930 13	$\begin{aligned} &\alpha(\text{IPF})=4.11\times10^{-5}\ 6\\ &\text{B}(\text{M1})(\text{W.u.})=0.008\ 8\\ &\alpha(\text{K})=0.000553\ 8;\ \alpha(\text{L})=6.95\times10^{-5}\ 10;\ \alpha(\text{M})=1.442\times10^{-5}\ 21;\\ &\alpha(\text{N}+)=0.000293\\ &\alpha(\text{N})=3.20\times10^{-6}\ 5;\ \alpha(\text{O})=5.22\times10^{-7}\ 8;\ \alpha(\text{P})=4.11\times10^{-8}\ 6; \end{aligned}$				
2606.49	4+	1387.1 <i>1</i>	100.0	1219.37	4+	M1+E2	1.1 +4-4	0.00123 8	α (IPF)=0.000289 4 B(M1)(W.u.)=0.07 +12-7; B(E2)(W.u.)=2.E+1 +5-2 α (K)=0.00102 7; α (L)=0.000131 8; α (M)=2.72×10 ⁻⁵ 17; α (N+)=4.92×10 ⁻⁵ 9 α (N)=6.0×10 ⁻⁶ 4; α (O)=9.8×10 ⁻⁷ 7; α (P)=7.5×10 ⁻⁸ 6; α (HE)=4.22×10 ⁻⁵ 6				
		1965 2.1	16.28	641 282	2^{+}				$\alpha(\text{IPF})=4.22\times10^{-6}$				
2624.4	8+	881.4	100.0	1743.05	6 ⁺	E2		0.00266 4	$\alpha(K)=0.00227 \ 4; \ \alpha(L)=0.000310 \ 5; \ \alpha(M)=6.49\times10^{-5} \ 9; \ \alpha(N+)=1.682\times10^{-5} \ 24 \ \alpha(N)=1.425\times10^{-5} \ 20; \ \alpha(Q)=2.20\times10^{-6} \ 4; \ \alpha(D)=1.640\times10^{-7} \ 23$				
2667.0	1+	1130.6 5	26 3	1536.33	2+	M1(+E2)	-6 +2-7	0.00158 <i>3</i>	$\begin{aligned} \alpha(N) &= 1.435 \times 10^{-5} 20; \ \alpha(O) &= 2.50 \times 10^{-5} 4; \ \alpha(P) &= 1.040 \times 10^{-7} 25 \\ B(M1)(W.u.) &= 0.0011 9 \\ \alpha(K) &= 0.00135 3; \ \alpha(L) &= 0.000178 4; \ \alpha(M) &= 3.71 \times 10^{-5} 7; \\ \alpha(N+) &= 1.071 \times 10^{-5} 19 \\ \alpha(N) &= 8.21 \times 10^{-6} 15; \ \alpha(O) &= 1.325 \times 10^{-6} 25; \ \alpha(P) &= 9.81 \times 10^{-8} \end{aligned}$				
		2025.5 10	55 3	641.282	2+	M1+(E2)	+1.3 3	0.000850 19	20; $\alpha(\text{IPF})=1.073 \times 10^{-6} 23$ δ : from β^- decay; >3.0 or <-2.5 from 1982Mi01. B(M1)(W.u.)=0.006 3; B(E2)(W.u.)=1.3 7 $\alpha(\text{K})=0.000465 13; \alpha(\text{L})=5.84 \times 10^{-5} 16; \alpha(\text{M})=1.21 \times 10^{-5} 4; \alpha(\text{N}+)=0.000314 5$ $\alpha(\text{N})=2.69 \times 10^{-6} 8; \alpha(\text{O})=4.37 \times 10^{-7} 12; \alpha(\text{P})=3.41 \times 10^{-8} 10;$				

 $^{142}_{58}\mathrm{Ce}_{84}\text{-}11$

						Ado	pted Levels, Gan	nmas (continue	<u>d)</u>
							$\gamma(^{142}\text{Ce})$ (co	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α^{\dagger}	Comments
2667.0	1+	2666.8 9	100 6	0.0	0+	M1		0.000989 14	α (IPF)=0.000311 5 δ : from β^- decay; +1.02 to +2.54 (1982Mi01), +0.60 5 (1975Ba15), see also 1977CoZO. B(M1)(W.u.)=0.012 6 α (K)=0.000290 4; α (L)=3.61×10 ⁻⁵ 5; α (M)=7.49×10 ⁻⁶ 11;
2680.50	(2,3,4)+	2039.2 2	100.0	641.282	2+	M1(+E2)	0.06 +14-9	0.000918 14	$\alpha(N+)=0.000656\ 10$ $\alpha(N)=1.662\times10^{-6}\ 24;\ \alpha(O)=2.71\times10^{-7}\ 4;\ \alpha(P)=2.14\times10^{-8}\ 3;$ $\alpha(IPF)=0.000654\ 10$ B(M1)(W.u.)=0.017\ 17 $\alpha(K)=0.000509\ 8;\ \alpha(L)=6.38\times10^{-5}\ 10;\ \alpha(M)=1.325\times10^{-5}\ 20;$ $\alpha(N+)=0.000332$ $\alpha(N)=2.94\times10^{-6}\ 5;\ \alpha(O)=4.80\times10^{-7}\ 8;\ \alpha(P)=3.78\times10^{-8}\ 6;$ $\alpha(IPF)=0.000320\ 5$
2697.03	2+	105.9 <i>3</i> 332.1 <i>4</i> 514.7 <i>4</i> 692.4 <i>6</i> 1044.1 <i>1</i>	5.3 2 2 5 2 3.5 100.0	2591.0 2364.91 2181.95 2004.89 1652.91	2+ 3+ 2+ 3-				<i>u</i> (IFF)=0.000329 3
		1160.8 1	65.85	1536.33	2+	M1+E2	-0.19 17	0.00204 6	B(M1)(W.u.)=0.04 4; B(E2)(W.u.)=0.7 +13-7 α (K)=0.00176 5; α (L)=0.000224 6; α (M)=4.66×10 ⁻⁵ 12; α (N+)=1.47×10 ⁻⁵ 4 α (N)=1.04×10 ⁻⁵ 3; α (O)=1.69×10 ⁻⁶ 5; α (P)=1.32×10 ⁻⁷ 4;
		2055.8 2	78.05	641.282	2+	M1+E2	-1.2 +7-19	0.00085 5	$\alpha(\text{IPF})=2.54\times10^{-6} \ 4$ B(M1)(W.u.)=0.004 4; B(E2)(W.u.)=0.8 7 $\alpha(\text{K})=0.00045 \ 3; \ \alpha(\text{L})=5.7\times10^{-5} \ 4; \ \alpha(\text{M})=1.18\times10^{-5} \ 8; \\ \alpha(\text{N}+)=0.000330 \ 9$ $\alpha(\text{N})=2.63\times10^{-6} \ 18; \ \alpha(\text{O})=4.3\times10^{-7} \ 3; \ \alpha(\text{P})=3.3\times10^{-8} \ 3;$
2698.58	4+	1479.2 <i>1</i>	100.0	1219.37	4+	M1+E2	1.3 +18-3	0.00108 8	α (IPF)=0.000327 9 B(M1)(W.u.)=0.03 +6-3; B(E2)(W.u.)=15 +16-15 α (K)=0.00087 7; α (L)=0.000111 9; α (M)=2.32×10 ⁻⁵ 18; α (N+)=7.68×10 ⁻⁵ 14 α (N)=5 1×10 ⁻⁶ 4; α (Q)=8 3×10 ⁻⁷ 7; α (D)=6 4×10 ⁻⁸ 6;
2715.14	3+	1178.8 <i>1</i>	40.00	1536.33	2+	M1+E2	-0.8 +4-4	0.00177 15	$\begin{aligned} \alpha(\text{N}) &= 5.1 \times 10^{-4} 4; \ \alpha(\text{O}) &= 8.5 \times 10^{-7}; \ \alpha(\text{P}) &= 6.4 \times 10^{-6} 6; \\ \alpha(\text{IPF}) &= 7.08 \times 10^{-5} 11 \\ \text{B}(\text{M1})(\text{W.u.}) &= 0.014 + 16 - 14; \ \text{B}(\text{E2})(\text{W.u.}) &= 4 + 5 - 4 \\ \alpha(\text{K}) &= 0.00152 \ 13; \ \alpha(\text{L}) &= 0.000196 \ 15; \ \alpha(\text{M}) &= 4.1 \times 10^{-5} \ 3; \\ \alpha(\text{N}+) &= 1.46 \times 10^{-5} \ 8 \end{aligned}$
		1495.8 <i>1</i>	100.0	1219.37	4+	M1+E2	0.37 7	0.001206 <i>21</i>	$\begin{aligned} &\alpha(\text{N})=9.0\times10^{-6}\ 7;\ \alpha(\text{O})=1.47\times10^{-6}\ 12;\ \alpha(\text{P})=1.13\times10^{-7}\ 10;\\ &\alpha(\text{IPF})=3.94\times10^{-6}\ 6\\ &\text{B}(\text{M}1)(\text{W.u.})=0.02\ +3-2;\ \text{B}(\text{E2})(\text{W.u.})=0.9\ +10-9\\ &\alpha(\text{K})=0.000973\ 17;\ \alpha(\text{L})=0.0001233\ 21;\ \alpha(\text{M})=2.56\times10^{-5}\ 5; \end{aligned}$

						Ado	pted Levels, Gam	mas (continued)
							γ ⁽¹⁴² Ce) (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{\dagger}	Comments
2715.14	3+	2073.7 2	60.00	641.282	2+	M1(+E2)	-0.03 6	0.000916 13	$\begin{aligned} &\alpha(\text{N}+)=8.40\times10^{-5} \\ &\alpha(\text{N})=5.69\times10^{-6}\ 10;\ \alpha(\text{O})=9.27\times10^{-7}\ 16;\ \alpha(\text{P})=7.25\times10^{-8} \\ &I3\ \alpha(\text{IPF})=7.73\times10^{-5}\ 11 \\ &\text{B}(\text{M}1)(\text{W.u.})=0.006\ 6 \\ &\alpha(\text{K})=0.000491\ 7;\ \alpha(\text{L})=6.16\times10^{-5}\ 9;\ \alpha(\text{M})=1.278\times10^{-5}\ 18; \\ &\alpha(\text{N}+)=0.000350\ 5 \end{aligned}$
2725.78	5+	982.7 1	47.06	1743.05	6+	M1(+E2)	-0.13 +19-14	0.00302 7	$\alpha(N)=2.84\times10^{-6} 4; \ \alpha(O)=4.63\times10^{-7} 7; \ \alpha(P)=3.65\times10^{-8} 6; \\ \alpha(IPF)=0.000347 5 \\ B(M1)(W.u.)=0.15 8 \\ \alpha(K)=0.00260 6; \ \alpha(L)=0.000333 7; \ \alpha(M)=6.92\times10^{-5} 14; \\ \alpha(N+)=1.81\times10^{-5} 4$
		1506.4 2	100.0	1219.37	4+	M1+E2	0.09 +4-3	0.001223 18	$\alpha(N)=1.54\times10^{-5} \ 3; \ \alpha(O)=2.50\times10^{-6} \ 6; \ \alpha(P)=1.95\times10^{-7} \ 5 \\ B(M1)(W.u.)=0.09 \ 5; \ B(E2)(W.u.)=0.18 \ 18 \\ \alpha(K)=0.000984 \ 14; \ \alpha(L)=0.0001245 \ 18; \ \alpha(M)=2.59\times10^{-5} \ 4; \\ \alpha(N+)=8.81\times10^{-5} \\ \end{array}$
2727.89	2 ⁽⁻⁾	1074.9 <i>1</i>	23.40	1652.91	3-	M1+E2	-2.0 +7-9	0.00188 13	$\begin{aligned} &\alpha(\mathrm{N}) = 5.74 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 9.36 \times 10^{-7} \ 14; \ \alpha(\mathrm{P}) = 7.34 \times 10^{-8} \ 11; \\ &\alpha(\mathrm{IPF}) = 8.13 \times 10^{-5} \ 12 \\ &\mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.0014 \ + 18 - 14; \ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 3 \ + 4 - 3 \\ &\alpha(\mathrm{K}) = 0.00161 \ 12; \ \alpha(\mathrm{L}) = 0.000212 \ 13; \ \alpha(\mathrm{M}) = 4.4 \times 10^{-5} \ 3; \\ &\alpha(\mathrm{N+}) = 1.15 \times 10^{-5} \ 8 \end{aligned}$
		1191.6 <i>1</i> 2086.6 <i>1</i>	100.0	1536.33 641.282	2^+ 2^+	D+Q	-0.43 10		$\alpha(N)=9.8\times10^{-6} 6; \alpha(O)=1.58\times10^{-6} 10; \alpha(P)=1.18\times10^{-7} 9$
2734.77	(3,2)+	622.7 ^{&} 1	61.54	2111.87	4 ⁺	(M1+E2)	0.19 25	0.0089 4	B(M1)(W.u.)<0.062; B(E2)(W.u.)<11 α (K)=0.0077 4; α (L)=0.00100 4; α (M)=0.000208 8; α (N+)=5.43×10 ⁻⁵ 20 α (N)=4.62×10 ⁻⁵ 17; α (C)=7.5×10 ⁻⁶ 2; α (D)=5.8×10 ⁻⁷ 2
		1081.9 <i>1</i>	35.90	1652.91	3-	(M1+E2)	-0.09 +12-20	0.00242 6	$a(N)=4.02\times10^{-17}, a(O)=7.5\times10^{-5}, a(P)=5.8\times10^{-5} \text{ B}(M1)(W.u.)<0.0066; B(E2)(W.u.)<0.095$ $a(K)=0.00208 \ 6; \ a(L)=0.000266 \ 7; \ a(M)=5.53\times10^{-5} \ 13;$ $a(N+.)=1.44\times10^{-5} \ 4$
		1515.4 2	100.0	1219.37	4+	M1+E2	-0.29 +23-18	0.00119 4	$\alpha(N)=1.23\times10^{-5} 3; \ \alpha(O)=2.00\times10^{-6} 5; \ \alpha(P)=1.56\times10^{-7} 5$ B(M1)(W.u.)<0.0068; B(E2)(W.u.)<0.32 $\alpha(K)=0.00096 3; \ \alpha(L)=0.000121 4; \ \alpha(M)=2.51\times10^{-5} 7; \ \alpha(N+)=9.10\times10^{-5} 14$
		2093.3 2	61.54	641.282	2+	M1+E2	5.2 +5-22	0.000815 14	$\begin{aligned} &\alpha(N) = 5.58 \times 10^{-6} \ 16; \ \alpha(O) = 9.1 \times 10^{-7} \ 3; \ \alpha(P) = 7.12 \times 10^{-8} \ 22; \\ &\alpha(IPF) = 8.45 \times 10^{-5} \ 12 \\ &B(M1)(W.u.) < 6.5 \times 10^{-5}; \ B(E2)(W.u.) < 0.20 \\ &\alpha(K) = 0.000412 \ 8; \ \alpha(L) = 5.16 \times 10^{-5} \ 10; \ \alpha(M) = 1.070 \times 10^{-5} \ 20; \\ &\alpha(N+) = 0.000341 \end{aligned}$

From ENSDF

 $^{142}_{58}\text{Ce}_{84}$ -13

					as (continued)			
						$\gamma(^{142}\text{Ce})$ (contin	nued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α^{\dagger}	Comments
2741.97	(2,3)+	1089.0 <i>1</i>	28.21	1652.91 3 ⁻				α (N)=2.37×10 ⁻⁶ 5; α (O)=3.86×10 ⁻⁷ 7; α (P)=3.00×10 ⁻⁸ 6; α (IPF)=0.000338 5
		1205.7 5 2100.9 2	4.6 100.0	1536.33 2 ⁺ 641.282 2 ⁺	M1+E2	-0.32 14	0.000905 16	B(M1)(W.u.)=0.021 8; B(E2)(W.u.)=0.3 3 α (K)=0.000471 9; α (L)=5.91×10 ⁻⁵ 11; α (M)=1.225×10 ⁻⁵ 23; α (N+)=0.000362 α (N)=2.72×10 ⁻⁶ 6; α (Q)=4.44×10 ⁻⁷ 0; α (R)=3.40×10 ⁻⁸ 7;
2767.86	$(1 2 3)^+$	1115 0 1	77 87	1652.01 3-				$\alpha(\text{IP})=2.72\times10^{-6}, \alpha(\text{O})=4.44\times10^{-9}, \alpha(\text{P})=3.49\times10^{-7}, \alpha(\text{IPF})=0.000359~6$
2707.80	(1,2,3)	1113.07 1231.57	36.07	1536.33 2 ⁺	M1+E2	0.47 +3-19	0.00172 6	B(M1)(W.u.)=0.039 <i>13</i> ; B(E2)(W.u.)=3.3 <i>12</i> α (K)=0.00147 <i>5</i> ; α (L)=0.000188 <i>6</i> ; α (M)=3.91×10 ⁻⁵ <i>13</i> ; α (N+)=2.03×10 ⁻⁵ <i>4</i> α (N)=8.7×10 ⁻⁶ <i>3</i> ; α (O)=1.41×10 ⁻⁶ <i>5</i> ; α (P)=1.10×10 ⁻⁷ <i>4</i> ; α (IDE)=1.008×10 ⁻⁵ <i>15</i>
		2126.5 2	100.0	641.282 2+	M1+E2	-0.19 8	0.000910 14	B(M1)(W.u.)=0.025 8; B(E2)(W.u.)=0.11 10 $\alpha(K)=0.000463 7; \alpha(L)=5.80\times10^{-5} 9; \alpha(M)=1.204\times10^{-5}$ $18; \alpha(N+)=0.000377 6$ $\alpha(N)=2.67\times10^{-6} 4; \alpha(O)=4.36\times10^{-7} 7; \alpha(P)=3.43\times10^{-8} 6;$ $\alpha(IPF)=0.000374 6$ Mult : from $\gamma\gamma(\theta)$ (1982Mi01, 1990La04)
2773.92	(3)+	661.5 ^{&} 1	30.77	2111.87 4+	(M1+E2)	0.19 25	0.0077 4	B(M1)(W.u.)<0.019; B(E2)(W.u.)<2.9 $\alpha(K)=0.0066\ 3;\ \alpha(L)=0.00086\ 4;\ \alpha(M)=0.000179\ 7;$ $\alpha(N+)=4.68\times10^{-5}\ 18$
		1237.6 <i>1</i>	28.85	1536.33 2+	M1+E2	0.40 +23-18	0.00172 8	$\alpha(N)=3.98\times10^{-5} \ 15; \ \alpha(O)=6.47\times10^{-6} \ 25; \ \alpha(P)=5.0\times10^{-7} \ 3$ B(M1)(W.u.)<0.0025; B(E2)(W.u.)<0.26 $\alpha(K)=0.00148 \ 7; \ \alpha(L)=0.000188 \ 8; \ \alpha(M)=3.91\times10^{-5} \ 16; \\ \alpha(N+)=2.12\times10^{-5} \ 5$ $\alpha(N)=8.7\times10^{-6} \ 4; \ \alpha(Q)=1.41\times10^{-6} \ 6; \ \alpha(P)=1.10\times10^{-7} \ 6;$
		1553.8 2	32.69	1219.37 4+	M1+E2	-0.9 +5-10	0.00106 9	$\alpha(\text{IPF})=1.094\times10^{-5} \ 16$ B(M1)(W.u.)<0.0012; B(E2)(W.u.)<0.25 $\alpha(\text{K})=0.00083 \ 7; \ \alpha(\text{L})=0.000105 \ 9; \ \alpha(\text{M})=2.18\times10^{-5} \ 18; \\ \alpha(\text{N}+)=0.0001038 \ 20$ $\alpha(\text{N})=4.8\times10^{-6} \ 4; \ \alpha(\text{O})=7.9\times10^{-7} \ 7; \ \alpha(\text{P})=6.1\times10^{-8} \ 6;$
		2133.3 2	100.0	641.282 2+	M1+E2	0.19 +3-7	0.000910 13	$\alpha(\text{IPF})=9.81\times10^{-5} I/$ B(M1)(W.u.)<0.0017; B(E2)(W.u.)<0.0100 $\alpha(\text{K})=0.000460 \ 7; \ \alpha(\text{L})=5.77\times10^{-5} \ 9; \ \alpha(\text{M})=1.196\times10^{-5} I8; \ \alpha(\text{N}+)=0.000380 \ 6$ $\alpha(\text{N})=2.66\times10^{-6} \ 4; \ \alpha(\text{O})=4.33\times10^{-7} \ 7; \ \alpha(\text{P})=3.41\times10^{-8} \ 5; \ \alpha(\text{IPF})=0.000377 \ 6$

$\gamma(^{142}Ce)$ (continued)

E_i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	$E_f J_f^{\pi}$	Mult. [‡]	δ	α^{\dagger}	Comments
2784.78	(3,4,5)	1565.4 2	100.0	1219.37 4+				
2792.9 2800.78	$1^{(+)}$	2152.0 8 1264.4 <i>1</i>	100.0 58.93	$1536.33 2^+$	M1		0.001710 24	B(M1)(W.u.)=0.36 8
								$\alpha(K)=0.001461\ 21;\ \alpha(L)=0.000186\ 3;\ \alpha(M)=3.86\times10^{-5}\ 6;$
								$\alpha(N+)=2.51\times10^{-5}$ 4 $\alpha(N)=8.57\times10^{-6}$ 12: $\alpha(\Omega)=1.397\times10^{-6}$ 20: $\alpha(P)=1.093\times10^{-7}$
								$16; \alpha(\text{IPF})=1.504\times10^{-5} 22$
		2160.0 2	19.64	641.282 2+	M1		0.000913 13	$B(M1)(W.u.)=0.122\ 25$
								$\alpha(\mathbf{K})=0.000450$ /; $\alpha(\mathbf{L})=5.64\times10^{-5}$ 8; $\alpha(\mathbf{M})=1.170\times10^{-5}$ 1/; $\alpha(\mathbf{N}+)=0.000395$ 6
								$\alpha(N)=2.60\times10^{-6} 4; \ \alpha(O)=4.24\times10^{-7} 6; \ \alpha(P)=3.34\times10^{-8} 5;$
								α (IPF)=0.000392 6 I _y : 19 2 from (γ,γ'). See comment on this gamma in (n,n'g)
		2000 4 2	100		2.61		0.001000.15	dataset.
		2800.4 2	100	0.0 0	MI		0.001023 15	B(M1)(W.u.)=0.0110 22 $\alpha(K)=0.000262.4$; $\alpha(L)=3.26\times10^{-5}$ 5; $\alpha(M)=6.76\times10^{-6}$ 10:
								$\alpha(N+)=0.000721 \ 11$
								$\alpha(N)=1.502\times10^{-6}\ 21;\ \alpha(O)=2.45\times10^{-7}\ 4;\ \alpha(P)=1.94\times10^{-8}\ 3;$ $\alpha(PF)=0.000720\ 10$
2806.42	3+	1270.2 <i>I</i>	97.62	1536.33 2+	M1+E2	-0.16 +8-11	0.00168 3	B(M1)(W.u.)=0.04 3; B(E2)(W.u.)=0.4 +5-4
								$\alpha(K)=0.00144 \ 3; \ \alpha(L)=0.000183 \ 4; \ \alpha(M)=3.80\times10^{-5} \ 7;$
								$\alpha(N+)=2.59\times10^{-4}$ $\alpha(N)=8.43\times10^{-6}$ 15; $\alpha(O)=1.374\times10^{-6}$ 25; $\alpha(P)=1.074\times10^{-7}$
		1506.0.0	40,40	1210.27 4+		0.0 . 5 . 2	0.00111.0	21; α (IPF)=1.599×10 ⁻⁵ 23
		1586.9 2	40.48	1219.37 4	M1(+E2)	0.3 + 5 - 3	0.00111-8	B(M1)(W.u.)=0.009 / α (K)=0.00086 7: α (L)=0.000109 8: α (M)=2.27×10 ⁻⁵ 16:
								$\alpha(N+)=0.0001181\ 22$
								$\alpha(N)=5.0\times10^{-6} 4; \ \alpha(O)=8.2\times10^{-7} 6; \ \alpha(P)=6.4\times10^{-8} 5; \ \alpha(PF)=0.0001122 19$
		2164.8 2	100.0	641.282 2+	M1+E2	0.43 +8-4	0.000899 14	$B(M1)(W.u.)=0.008\ 6;\ B(E2)(W.u.)=0.18\ 14$
								$\alpha(K)=0.000438\ 7;\ \alpha(L)=5.49\times10^{-5}\ 9;\ \alpha(M)=1.139\times10^{-5}\ 18;$ $\alpha(N+)=0.000394\ 6$
								$\alpha(N)=2.53\times10^{-6}$ 4; $\alpha(O)=4.12\times10^{-7}$ 7; $\alpha(P)=3.24\times10^{-8}$ 6; $\alpha(IPF)=0.000391$ 6
2842.56	(2,3)+	838.0 2	<1.149	$2004.89 2^+$				
		1623.0 2 2201.1 2	13.79 100.0	$641.282 2^+$	M1+E2	-0.26 +4-15	0.000909 15	B(M1)(W.u.)=0.045 12; B(E2)(W.u.)=0.36 15
								α (K)=0.000429 8; α (L)=5.37×10 ⁻⁵ 10; α (M)=1.114×10 ⁻⁵ 20; α (N+)=0.000415

						Adopte	ed Levels, Gamr	nas (continued)	
							$\gamma(^{142}\text{Ce})$ (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	J_f^{π}	Mult. [‡]	δ	α^{\dagger}	Comments
2952.24	2+	1(24.2.2	.0.4600	1210.27	4+				$ \begin{array}{c} \alpha(\mathrm{N}) = 2.47 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 4.04 \times 10^{-7} \ 8; \ \alpha(\mathrm{P}) = 3.18 \times 10^{-8} \ 6; \\ \alpha(\mathrm{IPF}) = 0.000412 \ 6 \end{array} $
2853.34	2	1634.2 2 2212.3 2	<0.4688 100.0	641.282	4 2 ⁺	M1+E2	-0.5 +15-3	0.00090 3	B(M1)(W.u.)=0.014 +18-14; B(E2)(W.u.)=0.4 +20-4 α (K)=0.000416 19; α (L)=5.21×10 ⁻⁵ 23; α (M)=1.08×10 ⁻⁵ 5; α (N+)=0.000417 10 α (N)=2.40×10 ⁻⁶ 11; α (O)=3.91×10 ⁻⁷ 18; α (P)=3.08×10 ⁻⁸
		2952.9.2	56.05	0.0	0+	E2@		0.000066.14	15; α (IPF)=0.000414 10
		2632.8 2	30.23	0.0	0.	E2 -		0.000900 14	B(E2)(W.U.)=0.32 78 $\alpha(K)=0.000236 4; \alpha(L)=2.92\times10^{-5} 4; \alpha(M)=6.05\times10^{-6} 9;$ $\alpha(N+)=0.000695 10$
									α (N)=1.344×10 ⁻⁶ <i>19</i> ; α (O)=2.19×10 ⁻⁷ <i>3</i> ; α (P)=1.717×10 ⁻⁸ 24; α (IPF)=0.000693 <i>10</i>
2857.6	(8 ⁺)	647.0 1114 4		2210.60 1743.05	6^+ 6^+				
2859.75	4	1206.7 1	100.0	1652.91	3-				
2868.07	$(4)^{+}$	1640.9 2	28.21	1219.37	4+ 3-				
2000.97	(4)	1649.4 2	89.74	1219.37	3 4 ⁺	M1+E2	-0.4 +3-4	0.00105 6	B(M1)(W.u.)<0.0039; B(E2)(W.u.)<0.25 α (K)=0.00078 5; α (L)=9.9×10 ⁻⁵ 6; α (M)=2.06×10 ⁻⁵ 12; α (N+)=0.000144 3 α (N)=4.6×10 ⁻⁶ 3; α (O)=7.4×10 ⁻⁷ 5; α (P)=5.8×10 ⁻⁸ 4; α (IPF)=0.0001384 23
		2228.3 ^{&} 2	66.67	641.282	2^{+}				
2887.74	3+	1668.4 2	28.21	1219.37	4+	M1+E2	1.1 +17-6	0.00095 7	B(M1)(W.u.)=0.012 +20-12; B(E2)(W.u.)=3 +5-3 α (K)=0.00070 6; α (L)=8.8×10 ⁻⁵ 8; α (M)=1.83×10 ⁻⁵ 15; α (N+)=0.000149 3 α (N)=4.1×10 ⁻⁶ 4; α (O)=6.6×10 ⁻⁷ 6; α (P)=5.1×10 ⁻⁸ 5; α (IPF)=0.000145 3
		2246.4 2	100.0	641.282	2+	M1+E2	0.9 +12-3	0.00088 4	B(M1)(W.u.)=0.02 +3-2; B(E2)(W.u.)=2 +3-2 α (K)=0.000390 21; α (L)=4.9×10 ⁻⁵ 3; α (M)=1.01×10 ⁻⁵ 6; α (N+)=0.000428 12 α (N)=2.25×10 ⁻⁶ 13; α (O)=3.66×10 ⁻⁷ 21; α (P)=2.87×10 ⁻⁸ 18: α (IPE)=0.000426 12
2935.14	(2,3,4)	1398.8 2 2292.7 2	100.0	1536.33 641 282	$2^+_{2^+}$				
2956.39	3+	1737.1 2	51.52	1219.37	4+	M1(+E2)	0.06 +7-9	0.001013 15	B(M1)(W.u.)=0.08 4 α (K)=0.000720 11; α (L)=9.07×10 ⁻⁵ 13; α (M)=1.88×10 ⁻⁵ 3; α (N+)=0.000184 3 α (N)=4.18×10 ⁻⁶ 6; α (O)=6.82×10 ⁻⁷ 10; α (P)=5.36×10 ⁻⁸ 8; α (IPF)=0.000179 3

н

	Adopted Levels, Gammas (continued)													
						$\gamma(^{142}\text{Ce})$ (cont	inued)							
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f J	\int_{f}^{π} Mult. [‡]	δ	α^{\dagger}	Comments						
2956.39	3+	2315.0 2	100.0	641.282 2+	M1+E2	-0.6 +23-9	0.00090 5	B(M1)(W.u.)=0.05 +11-5; B(E2)(W.u.)=2 +12-2 α (K)=0.000376 24; α (L)=4.7×10 ⁻⁵ 3; α (M)=9.8×10 ⁻⁶ 7; α (N+)=0.000468 16 α (N)=2.17×10 ⁻⁶ 14; α (O)=3.53×10 ⁻⁷ 23; α (P)=2.78×10 ⁻⁸ 20; α (IPF)=0.000465 16						
2994.0	9(-)	369.6 401.5		2624.4 8 ⁺ 2592.5 (7	+ D									
2999.02	1+	2358.3 2	100.0	641.282 2+	E2+M1		0.00089 5	α (K)=0.000352 23; α (L)=4.4×10 ⁻⁵ 3; α (M)=9.1×10 ⁻⁶ 6; α (N+)=0.000482 17 α (N)=2.02×10 ⁻⁶ 14; α (O)=3.30×10 ⁻⁷ 23; α (P)=2.59×10 ⁻⁸ 19; α (IPF)=0.000480 17 Mult.: from β^- decay.						
3009.90 3011.93	1	2998.4 2 2368.6 2 3011.9 2	51.52 100.0 100.0	$\begin{array}{ccc} 0.0 & 0^{+} \\ 641.282 & 2^{+} \\ 0.0 & 0^{+} \end{array}$	+ +			I_{γ} : 60.6 from (γ, γ') .						
3042.29		1822.9 2	100.0	1219.37 4+	+ M1+E2	-0.37 10	0.000953 17	B(M1)(W.u.)=0.010 +19-10; B(E2)(W.u.)=0.2 +5-2 α (K)=0.000634 12; α (L)=7.98×10 ⁻⁵ 15; α (M)=1.66×10 ⁻⁵ 3; α (N+)=0.000223 4 α (N)=3.68×10 ⁻⁶ 7; α (O)=6.00×10 ⁻⁷ 11; α (P)=4.70×10 ⁻⁸ 9; α (PE)=0.000219 4						
3051.79	(3)+	2401.0 2 864.6 ^{&} 2	85.19	641.282 2 ⁺ 2187.54 1 ⁻	-			<i>u</i> (III)=0.000217 +						
		1398.8 ^{cc} 1 1832.6 2	33.33	1652.91 3 1219.37 4 ⁺	M1+E2	<-0.6	0.000948 24	B(E2)(W.u.)<0.053 α (K)=0.000625 <i>18</i> ; α (L)=7.87×10 ⁻⁵ <i>23</i> ; α (M)=1.63×10 ⁻⁵ <i>5</i> ; α (N+)=0.000228 <i>4</i> α (N)=3.63×10 ⁻⁶ <i>11</i> ; α (O)=5.91×10 ⁻⁷ <i>18</i> ; α (P)=4.64×10 ⁻⁸						
		2410.3 2	17.39	641.282 2+	M1(+E2)	0.09 14	0.000935 14	$ \begin{array}{l} 1.5; \ \alpha(\text{IPF}) = 0.000223 \ 4 \\ \text{B(M1)(W.u.)} < 0.00027; \ \text{B(E2)(W.u.)} < 0.00087 \\ \alpha(\text{K}) = 0.000357 \ 6; \ \alpha(\text{L}) = 4.46 \times 10^{-5} \ 7; \ \alpha(\text{M}) = 9.25 \times 10^{-6} \ 14; \\ \alpha(\text{N}+) = 0.000524 \ 8 \end{array} $						
3060.98	+	1525.5 2	58.73	1536.33 2+	+ M1(+E2)	-0.09 +15-14	0.001198 20	$\alpha(N)=2.05\times10^{-6} 3; \ \alpha(O)=3.35\times10^{-7} 5; \ \alpha(P)=2.64\times10^{-8} 4; \\ \alpha(IPF)=0.000522 8 \\ B(M1)(W.u.)=0.019 +24-19 \\ (W.u.)=0.019 +24-19 \\ (W.u.)=0.00057 17 (0.00000000000000000000000000000000000$						
								$\alpha(K)=0.000957 \ 17; \ \alpha(L)=0.0001211 \ 21; \ \alpha(M)=2.51\times10^{-3} \ 5; \\ \alpha(N+)=9.49\times10^{-5} \\ \alpha(N)=5.58\times10^{-6} \ 10; \ \alpha(O)=9.10\times10^{-7} \ 16; \ \alpha(P)=7.14\times10^{-8} \\ 13; \ \alpha(IPF)=8.84\times10^{-5} \ 13 \\ I_{\gamma}: \ \text{branching ratio in } \beta^{-} \ \text{decay and } (n,n'\gamma) \ \text{do not agree}.$						
		2419.8 2	100.0	641.282 2+	H M1+E2	-0.26 17	0.000932 15	B(M1)(W.u.)=0.008 + 10-8; B(E2)(W.u.)=0.05 + 9-5						

From ENSDF

 $^{142}_{58}\mathrm{Ce}_{84}$ -17

 $^{142}_{58}\mathrm{Ce}_{84}$ -17

	Adopted Levels, Gammas (continued)												
						$\gamma(^{142}\text{Ce})$ (continued)						
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	$lpha^\dagger$	Comments					
				±				$\begin{aligned} &\alpha(\text{K}) = 0.000352 \ 7; \ \alpha(\text{L}) = 4.40 \times 10^{-5} \ 8; \ \alpha(\text{M}) = 9.12 \times 10^{-6} \ 16; \\ &\alpha(\text{N}+) = 0.000527 \ 8 \\ &\alpha(\text{N}) = 2.02 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 3.30 \times 10^{-7} \ 6; \ \alpha(\text{P}) = 2.60 \times 10^{-8} \ 5; \\ &\alpha(\text{IPF}) = 0.000525 \ 8 \end{aligned}$					
3060.98	+	3060.7 1	50	$0.0 0^+$									
3089.70	$(2,3)^+$	978.1 ^{&} 2	38.89	2111.87 4+									
		2448.4 2	100.0	641.282 2*	M1+E2	-0.8 +3-4	0.000912 20	B(M1)(W.u.)=0.011 7; B(E2)(W.u.)=0.7 5 $\alpha(K)=0.000331 9; \alpha(L)=4.13\times10^{-5} 12; \alpha(M)=8.57\times10^{-6} 24; \alpha(N+)=0.000531 1$ $\alpha(N)=1.90\times10^{-6} 6; \alpha(O)=3.10\times10^{-7} 9; \alpha(P)=2.44\times10^{-8} 8; \alpha(IPF)=0.000528 11$					
3101.87		2460.3 10	100 10	641.282 2+									
3106.04	3+	3101.5 <i>12</i> 1887 5 2	30.00 23.46	$0.0 0^{+}$ 1219.37 4 ⁺	M1+F2	25 + 6 - 23	0 00083 12	$B(M1)(W_{H}) = 0.0016 II \cdot B(F2)(W_{H}) = 1.7.9$					
5100.01	5	1007.0 2	25.10	1217.57		2.0 10 20	0.00000 12	$\alpha(K)=0.00051 \ 9; \ \alpha(L)=6.4\times10^{-5} \ 11; \ \alpha(M)=1.33\times10^{-5} \ 23; \alpha(N+)=0.000245 \ 11 \alpha(N)=3.0\times10^{-6} \ 5; \ \alpha(O)=4.8\times10^{-7} \ 9; \ \alpha(P)=3.7\times10^{-8} \ 8; \alpha(PF)=0.000242 \ 11 $					
		2463.9 2	100.0	641.282 2+	M1+E2	-2.0 +5-4	0.000884 15	B(M1)(W.u.)=0.005 3; B(E2)(W.u.)=1.7 9 α (K)=0.000313 6; α (L)=3.89×10 ⁻⁵ 8; α (M)=8.07×10 ⁻⁶ 16; α (N+)=0.000524 9 α (N)=1.79×10 ⁻⁶ 4; α (O)=2.92×10 ⁻⁷ 6; α (P)=2.28×10 ⁻⁸ 5; α (PF)=0.000522 9					
3109.79		1890.3 2	100.0	1219.37 4+									
2122.4		2468.6 2	42.86	641.282 2+									
3122.4		1091.2 8	50.00	2031.01 0' 2004.80 2 ⁺									
		3121.9 13	<23.00	$0.0 0^+$									
3125.71	(1,2,3)	2484.4 2	100.0	641.282 2+									
3144.57	3+	1608.4 2	100.0	1536.33 2+	M1+E2	-2.0 +20-6	0.00094 18	$\alpha(\mathbf{K})=0.00070 \ 15; \ \alpha(\mathbf{L})=9.0\times10^{-5} \ 19; \ \alpha(\mathbf{M})=1.9\times10^{-5} \ 4; \\ \alpha(\mathbf{N}+)=0.000123 \ 5 \\ \alpha(\mathbf{N}+)=0.00$					
								$\alpha(N)=4.1\times10^{-5}$ 9; $\alpha(O)=6.7\times10^{-7}$ 14; $\alpha(P)=5.2\times10^{-5}$ 12; $\alpha(IPF)=0.000118$ 4					
		2503.1 2	96.08	641.282 2+	M1+E2	-0.8 +3-4	0.000923 20	$\alpha(K)=0.000317 \ 8; \ \alpha(L)=3.96\times10^{-5} \ 11; \ \alpha(M)=8.20\times10^{-6} \ 22; \ \alpha(N+)=0.000558 \ 1$					
								α (N)=1.82×10 ⁻⁶ 5; α (O)=2.97×10 ⁻⁷ 8; α (P)=2.33×10 ⁻⁸ 7; α (IPF)=0.000556 11					
3153.76	2+	361.1 <i>3</i>	33	2792.9				I _{γ} : branching ratios from β^- decay. They do not agree with $(n,n'\gamma)$.					
		1618.2 7	100	1536.33 2+				I _{γ} : branching ratios from β^- decay. They do not agree with (n,n' γ).					

 $^{142}_{58}\mathrm{Ce}_{84}\text{--}18$

					as (continued)			
						γ (¹⁴² Ce) (conti	inued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α^{\dagger}	Comments
3153.76	2+	2512.4 2	33	641.282 2+	M1+E2	0.7 +9-5	0.00093 4	B(M1)(W.u.)=0.0012 +20-12; B(E2)(W.u.)=0.05 +12-5 α (K)=0.000317 14; α (L)=3.95×10 ⁻⁵ 18; α (M)=8.2×10 ⁻⁶ 4; α (N+)=0.000565 17 α (N)=1.82×10 ⁻⁶ 8; α (O)=2.97×10 ⁻⁷ 14; α (P)=2.33×10 ⁻⁸ 12; α (IPF)=0.000563 17 I _γ : branching ratios from β^- decay. They do not agree with
		3153.6 2	67	0.0 0+	E2 [@]		0.001053 15	(n,n' γ). B(E2)(W.u.)=0.11 +15-11 α (K)=0.000199 3; α (L)=2.45×10 ⁻⁵ 4; α (M)=5.08×10 ⁻⁶ 8; α (N+)=0.000824 12 α (N)=1.127×10 ⁻⁶ 16; α (O)=1.84×10 ⁻⁷ 3; α (P)=1.444×10 ⁻⁸ 21; α (IPF)=0.000823 12 I _{γ} : branching ratios from β ⁻ decay. They do not agree with (n,n' γ).
3155.36 3164.7		1619.1 2 1935.9 2 1628 5 7	100.0 100.0 <50.00	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
5101.7		2523.3 9 3164.7 <i>13</i>	<50.00 100.0	$\begin{array}{cccc} 641.282 & 2^+ \\ 0.0 & 0^+ \end{array}$				
3180.37	1	439.0 5 453.7 5 1644.3 7 2539.4 3 3180.2 2	13 25 63 100 75	$\begin{array}{cccc} 2741.97 & (2,3)^+ \\ 2725.78 & 5^+ \\ 1536.33 & 2^+ \\ 641.282 & 2^+ \\ 0.0 & 0^+ \\ 1210.27 & 4^+ \end{array}$				I _{γ} : branching ratios from β^- decay. I _{γ} : branching ratios from β^- decay.
5206.95	5	2567.0 2	100.0	641.282 2 ⁺	M1+E2	-0.32 +4-8	0.000959 14	B(M1)(W.u.)=0.023 22; B(E2)(W.u.)=0.21 21 α (K)=0.000311 5; α (L)=3.87×10 ⁻⁵ 6; α (M)=8.03×10 ⁻⁶ 12; α (N+)=0.000602 9 α (N)=1.78×10 ⁻⁶ 3; α (O)=2.91×10 ⁻⁷ 5; α (P)=2.30×10 ⁻⁸ 4; α (IPF)=0.000599 9
3218.21 3228.64	(5 ⁻)	2576.9 <i>2</i> 1575.72 9	100.0	$641.282 \ 2^+$ $1652.91 \ 3^-$				
3300.74	(-) 0+	1764.4 2	100	1536.33 2+				
3304.5	21	1768.27 2663.1 <i>10</i>	33 / 100 <i>14</i>	641.282 2 ⁺	Q+(D)	>+1.1		
3313.78	1	546.0 2 646.2 7 2672.6 10	<5.000 15 <i>10</i> 21 <i>3</i>	$\begin{array}{cccc} 2767.86 & (1,2,3)^+ \\ 2667.0 & 1^+ \\ 641.282 & 2^+ \\ 0.0 & 0^+ \end{array}$				I_{γ} : From (γ, γ') .
3380.5 3400.9	(9 ⁺) 1	3313.8 <i>12</i> 522.9 3400.9	100 5 100.0 100	$\begin{array}{ccc} 0.0 & 0^+ \\ 2857.6 & (8^+) \\ 0.0 & 0^+ \end{array}$				

$^{142}_{58}\text{Ce}_{84}$ -19

L

From ENSDF

 $^{142}_{58}\mathrm{Ce}_{84}$ -19

$\gamma(^{142}\text{Ce})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ
3420.15	$1^{-},2^{-}$	318.0 3	2.5 25	3101.87			
	<i>,</i>	878.2 4	10.00	2543.21	2+		
		1233.1 6	100.0 25	2187.54	1-	D+Q	
3423.61		681.2 6	14 15	2741.97	$(2,3)^+$		
		1058.4 4	28.57	2364.91	2+		
		1242.0 4	71.43	2181.95	3+		
		1393.0 8	42.86	2031.01	0^{+}		
		1770.8 7	57 15	1652.91	3-		
		1887.3 8	$4.\times10^{1}$ 3	1536.33	2^{+}		
		2782.2 10	100.0	641.282	2+		
3459.91		793.1 4	67	2667.0	1^{+}		
		1061.5 4	0.000	2398.42	1+		
		1455.1 5	12.50	2004.89	2+		
		1923.3 7	25 7	1536.33	2+		
		2818.5 11	100 7	641.282	2+		
		3459.3 <i>13</i>	31.25	0.0	0^{+}		
3470.31		677.0 6	17 17	2792.9			
		1072.2 8	33 17	2398.42	1+		
		1104.8 8	16.67	2364.91	2^{+}		
		1283.2 5	<16.67	2187.54	1-		
		1288.5 4	<16.67	2181.95	3+		
		1933.6 7	50.00	1536.33	2^{+}		
		2828.8 11	100.0	641.282	2+		
		3470.0 13	33.33	0.0	0^{+}		
3515.1	1	2873.8	100	641.282	2+		
		3515.1	90.9	0.0	0^{+}		
3536.3	(10^{+})	155.8		3380.5	(9 ⁺)		
		678.7		2857.6	(8^{+})		
3612.5	2+	915.6 5	1.5 16	2697.03	2+		
		1069.4 5	3.0 16	2543.21	2+		
		1214.0 5	1.5 16	2398.42	1+		
		2076.1 9	26 <i>3</i>	1536.33	2+	D+Q	-0.7 3
		2971.0 12	100 5	641.282	2+		
		3612.1 14	28.8 16	0.0	0^{+}		
3633.37	1	173.5 3	10 5	3459.91			
		531.6 2	14.29	3101.87			
		1089.9 7	14.29	2543.21	2+		
		1445.5 5	14.29	2187.54	1-		
		2096.6 9	5 5	1536.33	2+		
		2991.6 11	9.524	641.282	2+		
2642 -		3632.7 13	100 5	0.0	0+		
3643.5	1	3643.4	100	0.0	0^+		

20

	Adopted Levels, Gammas (continued)											
						$\gamma(^{142}\text{Ce})$ (e	continued)					
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	δ	α^{\dagger}	Comments				
3648.6		1461.2 <i>5</i> 2111.9 <i>8</i> 3006.8 <i>12</i>	100 5 <5.000 10.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
3675.8	1+	1494.1 7 2139.3 8 3034.3 <i>14</i>	27.27 100 <i>19</i> 100 <i>9</i>	$\begin{array}{cccc} 2181.95 & 3^+ \\ 1536.33 & 2^+ \\ 641.282 & 2^+ \end{array}$	D+Q	-0.56 10						
3688.9		946.9 <i>4</i> 3047.4 <i>14</i>	22.22 100.0	2741.97 (2,3) 641.282 2 ⁺	F							
3703.9		1112.9 5 1516.3 6 2050.9 8 3062.4 <i>13</i>	10 <i>10</i> 90 <i>10</i> 100 <i>20</i> 20.00	2591.0 2187.54 1 ⁻ 1652.91 3 ⁻ 641.282 2 ⁺								
3717.81	1+	297.9 <i>3</i> 989.8 <i>5</i> 1020.8 <i>4</i> 1352.6 <i>5</i>	99 18.18 <9.091 18.18	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- D:0	12.25						
3719.6	1	3075.9 <i>12</i> 1176.4 <i>4</i> 1688.6 <i>8</i> 3719.1 <i>13</i>	36.36 50.00 83.33 100.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D+Q	-1.2 +3-3						
3745.8	1	3745.7	100	0.0 0+								
3776.7	1	3776.6	100	$0.0 0^+$				5				
3832.6	11(-)	838.7	100	2994.0 9(-)	E2		0.00297 5	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00253 \ 4; \ \alpha(\mathbf{L}) = 0.000350 \ 5; \ \alpha(\mathbf{M}) = 7.32 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{N}+) = 1.90 \times 10^{-5} \ 3 \\ &\alpha(\mathbf{N}) = 1.618 \times 10^{-5} \ 23; \ \alpha(\mathbf{O}) = 2.59 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 1.83 \times 10^{-7} \ 3 \end{aligned}$				
3851.1		1846.2 <i>8</i> 3210.2 <i>12</i> 3850.4 <i>13</i>	20 <i>20</i> 40.00 100.0	$\begin{array}{ccc} 2004.89 & 2^+ \\ 641.282 & 2^+ \\ 0.0 & 0^+ \end{array}$								
3884.2		570.6 5 2347.4 9 3242.4 12	25 25 25 25 100.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$								
3906.3	(11+)	370.0 525.8	10010	$\begin{array}{c} 3536.3 \\ 3380.5 \\ (9^{+}) \end{array}$								
3914.4		1121.2 6 2378.6 9 3273.2 14	33.33 100.0 100.0	2792.9 1536.33 2 ⁺ 641.282 2 ⁺								
3975.94		1280.1 <i>4</i> 1793.8 <i>7</i> 1961.5 <i>9</i> 3334.2 <i>12</i>	<33.33 <33.33 100.0 66.67	2697.03 2+ 2181.95 3+ 2014.5 641.282 2+								

 $^{142}_{58}\text{Ce}_{84}$ -21

I

$\gamma(^{142}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.‡	δ
3975.94		3975.6.2	<33.33	0.0	0^{+}		
4043.5	2^{+}	339.5 4	10 5	3703.9			
		1500.3 6	10.00	2543.21	2^{+}		
		2038.7 8	100 5	2004.89	2+	D+Q	-0.99 20
		3401.9 12	35.00	641.282	2^{+}		
4045.6		341.7 4	100	3703.9			
		1348.7 5	<100	2697.03	2^{+}		
		4045.2		0.0	0^{+}		
4048.4		216		3832.6	$11^{(-)}$		
4356.7	(12^{+})	450.3	100.0	3906.3	(11^{+})		
4605.2	(13^{-})	248.4		4356.7	(12^{+})		
		557		4048.4			
		772.4	100.0	3832.6	$11^{(-)}$		
4717.2		884.6	100.0	3832.6	$11^{(-)}$		
4896.2	(14^{-})	178.9		4717.2			
		290.9		4605.2	(13^{-})		
5173.4	(15^{-})	277.1		4896.2	(14^{-})		
		568.4		4605.2	(13^{-})		
5514.6	(16 ⁻)	341		5173.4	(15^{-})		
		618.4		4896.2	(14^{-})		
5877.2	(17^{-})	362.5		5514.6	(16 ⁻)		
		703.9		5173.4	(15 ⁻)		
6528.1		1013.5	100.0	5514.6	(16 ⁻)		
6879.9		1002.7	100.0	5877.2	(17^{-})		

[†] Additional information 1. [‡] From $\gamma\gamma(\theta)$ in ¹⁴²La β^- decay or $\gamma(\theta)$ in $(n,n'\gamma)$ and assumption that usually M2 cannot compete with E1. Pure quadrupole transitions are taken to be E2 while significantly admixed D+Q transitions are assumed to be M1+E2. # From $\gamma(\theta)$, supported by $\gamma(\text{linear pol})$ results (1992A111). @ From $\gamma(\theta)$ (1992A111).

[&] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{142}_{58}\mathrm{Ce}_{84}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁴²₅₈Ce₈₄

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁴²₅₈Ce₈₄

 $^{142}_{58}\mathrm{Ce}_{84}$

 $^{142}_{58}\mathrm{Ce}_{84}\text{--}29$

From ENSDF

 $^{142}_{58}\mathrm{Ce}_{84}\text{--}29$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁴²₅₈Ce₈₄