142 Ce(n,n' γ) **1995Va25,1992Al11**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli	NDS 112, 1949 (2011)	1-Jun-2010

1995Va25: E=2.0-to 3.3 MeV. Enriched target (93%). BGO Compton-suppressed HPGe-detectors. Measured γ , $\gamma(\theta)$, $\gamma(t)$, excit. 1992Al11: E=reactor. Measured γ , $\gamma(\theta)$, linear pol.

Unless stated otherwise, data are from 1995Va25. Their results are mostly in agreement with 1992A111. However, some transitions from the following levels (γ energies are given in parentheses) given by 1992A111 were not confirmed by 1995Va25: 2044.5(390 γ), 2278.0(272 γ), 2570.2(827.4 γ), 2680.6(1027 γ), 2697.3(2697 γ), 2698.6(586 γ), 2715.4(671 γ), 2742(2742 γ), 2887.8(2888 γ), 2999.0(1463 γ), 3061.8(3061 γ), 3089.9(3091 γ), 3106.1(1101 γ ,1569 γ), and 3153.6(1618 γ). These have been left out of the level scheme.

¹⁴²Ce Levels

E(level) [‡]	\mathbf{J}^{π}	$T_{1/2}^{\dagger}$	Comments
0	0^{+}		
641.19 6	2+ #		
1219.30 7	4+ #		
1536.27 7	2+	<0.83 ps	
1652.85 7	3 ^{-#}	>1.8 ps	
1742.97 8	6+ #	-	
2004.84 9	2+	0.045 ps +5-4	
2030.90 12	0+	0.17 ps +15-6	
2044.43 8	4 ^{+#}	0.33 ps +11-7	
2111.80 12	4 ^{+#}	0.37 ps +30-12	
2124.83 10	5- #	>0.41 ps	
2181.88 8	3+	0.26 ps +55-11	
2187.46 15	1-	0.011 ps 2	
2210.52 ^{^w} 8	6+		
2278.07 10	4 ^{+#}	0.083 ps +49-28	
2329.82 11	3+	0.21 ps + 21 - 8	
2364.81 15	2'	0.016 ps + 3 - 2	In suggested I-6 is not consistent with D+0 et to 4 ⁺
2374.88 10	<u>4</u> -	>0.09 ps 0.060 ps $\pm 76-28$	J^{-1} suggested $J=0$ is not consistent with $D+Q^{-\gamma}$ to 4^{-1} .
2398.36 9	1+	0.076 ps + 21 - 14	
2539.64 11	4+ #	0.041 ps + 18 - 12	
2542.82 20	1	<0.014 ps	
2543.21 10	2+	0.21 ps +25-8	
2570.00 12	5+	0.12 ps +18-6	
2576.16 8	3+	>0.69 ps	
2598.22 11	2+#	>1.66 ps	
2602.48 9	$(3,2)^{+}$	0.24 ps +25-8	
2606.40 10	4 ⁺ [#]	0.049 ps +83-28	
2667.17 10	$(2 3 4)^+$	0.054 ps + 24 - 15 0.15 ps + 15 6	
2697 01 9	(2,3,4) 2 (3) ⁺	0.13 ps + 15 = 0 0.08 ps + 6 = 3	
2698 50 12	4+#	0.076 ps + 21 - 15	
2715.07 9	3+	0.12 ps + 13 - 5	
2725.68 12	5+	0.049 ps +26-16	
2727.81 8	$2^{(-)}$	0.27 ps +29-8	
2734.70 11	$(3,2)^+$	>0.37 ps	
2741.90 11	(2,3)	0.076 ps +28-14	
2767.80 9	(1,2,3)	0.055 ps + 18 - 12	

142 Ce(n,n' γ) 1995Va25,1992Al11 (continued)

¹⁴²Ce Levels (continued)

E(level) [‡]	\mathbf{J}^{π}	$T_{1/2}^{\dagger}$	Comments
2773.85 10	(3)	>0.69 ps	
2784.71 21	(3,4,5)	0.23 ps + 63 - 10	
2800.72 10	1 ⁽⁺⁾	0.010 ps 2	
2806.35 10	3+	0.10 ps + 7 - 3	
2842.48 13	(2,3)	0.038 ps + 10 - 8	
2853.28 13	2+	0.076 ps + 42 - 21	
2859.68 11	4	>0.69 ps	
2868.90 11	(4)	>0.46 ps	
2887.66 16	3	0.041 ps + 12 - 9	
2933.91 21	(2,3,4)	>0.48 ps	
2956.31 16	3	0.017 ps $+7-6$	
2998.97 15	1	0.017 ps + 13 - 8	
3009.81 21		>0.69 ps	
3011.93 20	1	0.016 ps +6-4	
3042.21 16		0.18 ps +34-8	J^{π} : suggested J=6 is not consistent with D+Q to 4 ⁺ .
3051.71 16	(3)	>0.69 ps	
3061.39 16		0.09 ps +11-4	
3089.61 21	(2,3)	0.058 ps +29-17	
3105.96 16	3	0.053 ps +26-15	
3109.71 16		>0.69 ps	
3125.61 21	(1,2,3)	>0.65 ps	
3144.50 16	3+		
3153.62 15	2+	0.11 ps +15-5	
3155.29 16		>0.69 ps	
3180.35 17	1	>0.69 ps	
3208.86 16	3	0.043 ps +41-18	
3218.11 21		>0.69 ps	
3228.58 11	(3 ⁻)		E(level): from 1992A111 seen also in (t,p), (e,e'). Not seen by 1995Va25. J ^π : from $\gamma(\theta)$ (1992A111).
3300.68 21		>0.69 ps	

[†] From DSA (1995Va25).
[‡] From 1995Va25.
[#] Consistent with γ linear pol data (1992A111).
[@] From 1992A111. Although level and its depopulating transitions not seen by 1995Va25 the level was confirmed in (e,e').

γ ⁽¹⁴² Ce)											
E _i (level)	\mathbf{J}_i^{π}	Eγ	Ι _γ @	$E_f J_f^{\pi}$	Mult.	δ	$lpha^\dagger$	Comments			
641.19	2+	641.3 1	100	0 0+	E2 [‡]		0.00563 8	$\alpha = 0.00563 \ 8; \ \alpha(K) = 0.00475 \ 7; \\ \alpha(L) = 0.000695 \ 10; \ \alpha(M) = 0.0001463 \ 21; \\ \alpha(N+) = 3.77 \times 10^{-5} \ 6 \\ \alpha(N) = 3.22 \times 10^{-5} \ 5; \ \alpha(O) = 5.11 \times 10^{-6} \ 8; \\ \alpha(P) = 3.40 \times 10^{-7} \ 5 $			
1219.30	4+	578.1 <i>1</i>	100	641.19 2+	E2		0.00733 11	α =0.00733 <i>11</i> ; α (K)=0.00616 <i>9</i> ; α (L)=0.000925 <i>13</i> ; α (M)=0.000195 <i>3</i> ; α (N+)=5.02×10 ⁻⁵ <i>7</i> α (N)=4.30×10 ⁻⁵ <i>6</i> ; α (O)=6.79×10 ⁻⁶ <i>10</i> ; α (D)=4.29×10 ⁻⁷ <i>7</i>			
1536.27	2+	895.1 <i>1</i>	99	641.19 2+	M1+E2	-1.5 +6-13	0.0029 3	$\alpha(\Gamma) = 4.38 \times 10^{-7}$ $\alpha = 0.0029 \ 3; \ \alpha(K) = 0.0025 \ 3; \ \alpha(L) = 0.00034$ $\beta; \ \alpha(M) = 7.0 \times 10^{-5} \ 6; \ \alpha(N+) = 1.82 \times 10^{-5}$			

$\gamma(^{142}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	$I_{\gamma}^{@}$	$E_f J_j'$	f_{f} Mult.	δ	α^{\dagger}	Comments
1536.27	2+	1537.4 2	1	0 0	+ E2 [#]		0.000934 13	$ \frac{16}{\alpha(N)=1.55\times10^{-5} \ 14;} \\ \alpha(O)=2.50\times10^{-6} \ 23; \\ \alpha(P)=1.85\times10^{-7} \ 22 \\ \alpha=0.000934 \ 13; \ \alpha(K)=0.000726 \ 11; \\ \alpha(L)=9.30\times10^{-5} \ 13; \\ \alpha(M)=1.93\times10^{-5} \ 3; \\ \alpha(N+)=9.56\times10^{-5} \ 14 \\ \alpha(N)=4.28\times10^{-6} \ 6; $
1652.85	3-	433.2 1	13	1219.30 4	+ E1 [‡]		0.00501 7	$\alpha(O)=6.94\times10^{-7} \ 10;$ $\alpha(P)=5.28\times10^{-8} \ 8;$ $\alpha(IPF)=9.06\times10^{-5} \ 13$ $\alpha=0.00501 \ 7; \ \alpha(K)=0.00431 \ 6;$ $\alpha(L)=0.0001555 \ 8;$ $\alpha(M)=0.0001153 \ 17;$ $\alpha(N+)=2.99\times10^{-5} \ 5$
		1011.7 <i>1</i>	87	641.19 2	+ E1‡		0.000827 12	$\alpha(N)=2.55\times10^{-5} 4;$ $\alpha(O)=4.09\times10^{-6} 6;$ $\alpha(P)=2.99\times10^{-7} 5$ $\alpha=0.000827 12; \ \alpha(K)=0.000715 10;$ $\alpha(L)=8.90\times10^{-5} 13;$ $\alpha(M)=1.84\times10^{-5} 3;$
1742.97	6+	523.5 1	100	1219.30 4	+ E2 [‡]		0.00952 14	$\alpha(N+)=4.80\times10^{-6} 6;$ $\alpha(N)=4.08\times10^{-6} 6;$ $\alpha(O)=6.62\times10^{-7} 10;$ $\alpha(P)=5.08\times10^{-8} 8$ $\alpha=0.00952 14; \alpha(K)=0.00797 12;$ $\alpha(L)=0.001231 18;$ $\alpha(M)=0.000260 4;$ $\alpha(N+)=6.68\times10^{-5} 10$
2004.84	2+	352.1 <i>1</i> 1363.6 <i>1</i>	2 70	1652.85 3 ⁻ 641.19 2 ⁻	- + M1+E2	-0.26 +14-17	0.00144 4	$\alpha(N)=5.73\times10^{-5} 8;$ $\alpha(O)=9.00\times10^{-6} 13;$ $\alpha(P)=5.62\times10^{-7} 8$ $\alpha=0.00144 4; \alpha(K)=0.00121 4;$ $\alpha(L)=0.000154 5;$ $\alpha(M)=3.20\times10^{-5} 9;$
		2004.9 2	28	0 0	+ E2 [#]		0.000808 12	$\alpha(N+)=4.42\times10^{-5} 7$ $\alpha(N)=7.10\times10^{-6} 19;$ $\alpha(O)=1.16\times10^{-6} 4;$ $\alpha(P)=9.0\times10^{-8} 3;$ $\alpha(IPF)=3.59\times10^{-5} 5$ $\alpha=0.000808 12; \alpha(K)=0.000443 7;$ $\alpha(L)=5.56\times10^{-5} 8;$ $\alpha(M)=1.154\times10^{-5} 17;$
2030.90 2044.43	0 ⁺ 4 ⁺	1389.7 <i>1</i> 825.2 <i>1</i>	100 3	641.19 2 ⁻ 1219.30 4 ⁻	+ + M1(+E2)	-0.06 +14-23	0.00457 <i>13</i>	$\alpha(N+)=0.000298 5$ $\alpha(N)=2.56\times10^{-6} 4;$ $\alpha(O)=4.16\times10^{-7} 6;$ $\alpha(P)=3.22\times10^{-8} 5;$ $\alpha(IPF)=0.000295 5$ $\alpha=0.00457 13; \alpha(K)=0.00393 12;$

				¹⁴² Ce	$e(\mathbf{n},\mathbf{n}'\gamma)$ 19	95Va25,1992A11	1 (continued)	
					$\gamma(^{14})$	² Ce) (continued)		
E _i (level)	\mathbf{J}_i^{π}	Eγ	$I_{\gamma}^{@}$	$E_f J_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
								$\begin{array}{c} \alpha(\text{L})=0.000506 \ 13;\\ \alpha(\text{M})=0.000105 \ 3;\\ \alpha(\text{N}+)=2.75\times10^{-5} \ 7\\ \alpha(\text{N})=2.34\times10^{-5} \ 6;\\ \alpha(\text{O})=3.81\times10^{-6} \ 10;\\ \alpha(\text{P})=2.96\times10^{-7} \ 9 \end{array}$
2044.43	4+	1403.0 <i>1</i>	97	641.19 2+	E2#		0.001054 15	$\alpha = 0.001054 \ I5; \ \alpha(K) = 0.000867$ $I3; \ \alpha(L) = 0.0001117 \ I6;$ $\alpha(M) = 2.32 \times 10^{-5} \ 4;$ $\alpha(N+) = 5.25 \times 10^{-5}$ $\alpha(N) = 5.15 \times 10^{-6} \ 8;$ $\alpha(O) = 8.34 \times 10^{-7} \ I2;$ $\alpha(P) = 6.30 \times 10^{-8} \ 9;$ $\alpha(IPF) = 4.65 \times 10^{-5} \ 7$
2111.80	4+	892.5 1	100	1219.30 4+	M1+E2	-0.43 +4-9	0.00361 9	$\alpha = 0.00361 \ 9; \ \alpha(K) = 0.00310 \ 8; \alpha(L) = 0.000402 \ 9; \alpha(M) = 8.36 \times 10^{-5} \ 19; \alpha(N+) = 2.18 \times 10^{-5} \ 5 \alpha(N) = 1.86 \times 10^{-5} \ 4; \alpha(O) = 3.02 \times 10^{-6} \ 7; \alpha(P) = 2.32 \times 10^{-7} \ 6$
2124.83	5-	381.8 <i>I</i>	9	1742.97 6+				
		4/1 ^{ac} 7 905.6 1	10 80	1652.85 3 ⁻ 1219.30 4 ⁺	E1 [#]		0.001021 15	$ \begin{array}{l} \alpha = 0.001021 \ 15; \ \alpha(\mathrm{K}) = 0.000882 \\ 13; \ \alpha(\mathrm{L}) = 0.0001103 \ 16; \\ \alpha(\mathrm{M}) = 2.29 \times 10^{-5} \ 4; \\ \alpha(\mathrm{N} +) = 5.95 \times 10^{-6} \\ \alpha(\mathrm{N}) = 5.06 \times 10^{-6} \ 7; \\ \alpha(\mathrm{O}) = 8.20 \times 10^{-7} \ 12; \\ \alpha(\mathrm{P}) = 6.26 \times 10^{-8} \ 9 \end{array} $
2181.88	3+	528.7 <i>1</i> 645.6 <i>1</i>	4 12	1652.85 3 ⁻ 1536.27 2 ⁺	M1+E2	-0.40 +8-11	0.00789 22	$\alpha = 0.00789 \ 22; \ \alpha(K) = 0.00676 \ 19;$ $\alpha(L) = 0.000889 \ 21;$ $\alpha(M) = 0.000185 \ 5;$ $\alpha(N+) = 4.83 \times 10^{-5} \ 12$ $\alpha(N) = 4.11 \times 10^{-5} \ 10;$ $\alpha(O) = 6.67 \times 10^{-6} \ 16;$ $\alpha(P) = 5.09 \times 10^{-7} \ 16$
		962.5 1	46	1219.30 4+	M1(+E2)	-0.5 +15-17	0.0030 7	$\alpha = 0.0030 \ 7; \ \alpha(K) = 0.0026 \ 6; \\ \alpha(L) = 0.00033 \ 7; \ \alpha(M) = 6.9 \times 10^{-5} \\ I3; \ \alpha(N+) = 1.8 \times 10^{-5} \ 4 \\ \alpha(N) = 1.5 \times 10^{-5} \ 3; \ \alpha(O) = 2.5 \times 10^{-6} \\ 5; \ \alpha(P) = 1.9 \times 10^{-7} \ 5 \end{bmatrix}$
2187 46	1-	1540.9 <i>I</i>	39 <0 3	641.19 2 ⁺	M1+E2	+0.09 +4-3	0.001180 <i>17</i>	$\alpha = 0.001180 \ 17; \ \alpha(K) = 0.000936$ 14; \(\alpha(L) = 0.0001184 \ 17; \(\alpha(K) = 0.000108 \ 17; \(\alpha(K) = 0.000100 \ \alpha(N) = 5.46 \times 10^{-5} \ 4; \(\alpha(N) = 5.46 \times 10^{-6} \ 8; \(\alpha(O) = 8.90 \times 10^{-7} \ 13; \(\alpha(P) = 6.98 \times 10^{-8} \ 10; \(\alpha(P) = 9.42 \times 10^{-5} \ 14\ \end{tabular}

				14	⁴² Ce(n,n'γ) 1	1995Va25,1992A11	1 (continued)	
						$\gamma(1)$	⁴² Ce) (continued)		
E _i (level)	\mathbf{J}_i^{π}	Eγ	Ι _γ @	E_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
2187.46	1-	1546.3 2	41	641.19	2+	E1		0.000640 9	$ \frac{\alpha = 0.000640 \ 9; \ \alpha(K) = 0.000337 \ 5;}{\alpha(L) = 4.15 \times 10^{-5} \ 6;} \\ \alpha(M) = 8.58 \times 10^{-6} \ 12; \\ \alpha(N+) = 0.000253 \ 4 \\ \alpha(N) = 1.90 \times 10^{-6} \ 3; \ \alpha(O) = 3.09 \times 10^{-7} \\ 5; \ \alpha(P) = 2.41 \times 10^{-8} \ 4; \\ \alpha(IPF) = 0.000250 \ 4 $
		2187.4 2	58	0	0+	E1 [#]		0.000941 <i>14</i>	$ \begin{aligned} &\alpha = 0.000941 \ 14; \ \alpha(\mathbf{K}) = 0.000193 \ 3; \\ &\alpha(\mathbf{L}) = 2.35 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{M}) = 4.86 \times 10^{-6} \ 7; \\ &\alpha(\mathbf{N} = 1.079 \times 10^{-6} \ 16; \\ &\alpha(\mathbf{O}) = 1.757 \times 10^{-7} \ 25; \\ &\alpha(\mathbf{P}) = 1.377 \times 10^{-8} \ 20; \\ &\alpha(\mathbf{IPF}) = 0.000718 \ 10 \end{aligned} $
2210.52	6+	467.55 2 991.21 6	83 17	1742.97 1219.30	6+ 4+	E2		0.00206 3	$\alpha = 0.00206 \ 3; \ \alpha(K) = 0.001757 \ 25; \alpha(L) = 0.000236 \ 4; \alpha(M) = 4.93 \times 10^{-5} \ 7; \alpha(N+) = 1.279 \times 10^{-5} \ 18 \alpha(N) = 1.091 \times 10^{-5} \ 16; \alpha(O) = 1.754 \times 10^{-6} \ 25; \alpha(D) = 1.274 \times 10^{-7} \ 18$
2278.07	4+	1058.5 <i>1</i>	29	1219.30	4+	M1+E2	2.1 +18-3	0.00193 10	$\alpha(1) = 1.274 \times 10^{-178}$ $\alpha = 0.00193 \ 10; \ \alpha(K) = 0.00165 \ 9;$ $\alpha(L) = 0.000218 \ 10;$ $\alpha(M) = 4.54 \times 10^{-5} \ 21;$ $\alpha(N+) = 1.18 \times 10^{-5} \ 6$ $\alpha(N) = 1.01 \times 10^{-5} \ 5; \ \alpha(O) = 1.62 \times 10^{-6}$ $8; \ \alpha(P) = 1.21 \times 10^{-7} \ 7$
		1636.8 2	71	641.19	2+	E2 [#]		0.000878 13	$\alpha = 0.000878 \ 13; \ \alpha(K) = 0.000645 \ 9; \alpha(L) = 8.21 \times 10^{-5} \ 12; \alpha(M) = 1.706 \times 10^{-5} \ 24; \alpha(N+) = 0.0001335 \alpha(N) = 3.78 \times 10^{-6} \ 6; \ \alpha(O) = 6.14 \times 10^{-7} \ 9; \ \alpha(P) = 4.69 \times 10^{-8} \ 7; \alpha(P) = 0.0001290 \ 18$
2329.82	3+	793.4 1	30	1536.27	2+	M1+E2	0.37 +23-18	0.00483 25	$\alpha(N + 1) = 0.00412 + 0.00415 + 22;$ $\alpha(L) = 0.000538 + 24;$ $\alpha(M) = 0.000112 + 5;$ $\alpha(N+) = 2.92 \times 10^{-5} + 13$ $\alpha(N) = 2.49 \times 10^{-5} + 11;$ $\alpha(O) = 4.04 \times 10^{-6} + 19;$ $\alpha(P) = 3.11 \times 10^{-7} + 18$
		1689.2 2	70	641.19	2+	M1+E2	-0.16 <i>13</i>	0.001040 <i>18</i>	$\begin{aligned} &\alpha = 0.001040 \ 18; \ \alpha(\text{K}) = 0.000762 \ 14; \\ &\alpha(\text{L}) = 9.61 \times 10^{-5} \ 17; \\ &\alpha(\text{M}) = 2.00 \times 10^{-5} \ 4; \\ &\alpha(\text{N}+) = 0.0001619 \\ &\alpha(\text{N}) = 4.43 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 7.22 \times 10^{-7} \\ &13; \ \alpha(\text{P}) = 5.67 \times 10^{-8} \ 11; \\ &\alpha(\text{IPF}) = 0.0001567 \ 23 \end{aligned}$

¹⁴²Ce(n,n' γ)

1995Va25,1992Al11 (continued) γ ⁽¹⁴²Ce) (continued) α^{\dagger} $\frac{E_f}{641.19} \frac{J_f^{\pi}}{2^+}$ E_i(level) Mult. δ Comments 2364.81 76 M1(+E2) -0.03 +9-10 0.001022 15 α =0.001022 15; α (K)=0.000733 11; α (L)=9.23×10⁻⁵ 14; $\alpha(M) = 1.92 \times 10^{-5} 3;$ $\alpha(N+..)=0.0001777$ $\alpha(N) = 4.26 \times 10^{-6}$ 7; $\alpha(O) = 6.94 \times 10^{-7}$ 10; $\alpha(P)=5.46\times10^{-8} 8;$ α (IPF)=0.0001727 25 E2 2364.8 2 0^{+} 0.000848 12 α =0.000848 *12*; α (K)=0.000329 *5*; 24 0 $\alpha(L)=4.10\times10^{-5}$ 6; $\alpha(M) = 8.49 \times 10^{-6}$ 12; α(N+..)=0.000470 7 $\alpha(N) = 1.88 \times 10^{-6} 3;$ $\alpha(O) = 3.07 \times 10^{-7} 5;$ $\alpha(P)=2.39\times10^{-8}$ 4: α (IPF)=0.000468 7 $\alpha = 0.0077 \ 10; \ \alpha(K) = 0.0066 \ 9;$ 2374.88 1742.97 6+ 0.0077 10 631.8 *1* 48 M1+E2<-1.5 α(L)=0.00089 9; α(M)=0.000185 18; α (N+..)=4.8×10⁻⁵ 5 $\alpha(N)=4.1\times10^{-5}$ 4; $\alpha(O)=6.6\times10^{-6}$ 7; α (P)=4.9×10⁻⁷ 8 *α*=0.00208 *4*; *α*(K)=0.00179 *3*; 1155.7 1 52 0.00208 4 1219.30 4+ M1(+E2) -0.09 +6-11 α (L)=0.000228 4; $\alpha(M) = 4.74 \times 10^{-5} 8;$ α (N+..)=1.460×10⁻⁵ 23 $\alpha(N) = 1.053 \times 10^{-5} 17;$ $\alpha(O) = 1.72 \times 10^{-6} 3;$ $\alpha(P)=1.341\times10^{-7}$ 23; α (IPF)=2.22×10⁻⁶ 4 2384.38 4-202.3 1 5 2181.88 3+ 731.5 1 79 1652.85 3-M1+E2 -0.8 + 3 - 40.0053 5 $\alpha = 0.0053 5; \alpha(K) = 0.0046 4;$ α (L)=0.00061 4; α (M)=0.000126 8; α (N+..)=3.29×10⁻⁵ 21 $\alpha(N) = 2.80 \times 10^{-5}$ 18; $\alpha(O) = 4.5 \times 10^{-6} 3; \alpha(P) = 3.4 \times 10^{-7}$ 3 1165.3 *1* 16 1219.30 4+ 2398.36 1^{+} 1536.27 2+ M1(+E2) 0.03 5 0.00412 6 *α*=0.00412 *6*; *α*(K)=0.00355 *5*; 862.1 *1* 8 α (L)=0.000456 7; $\alpha(M) = 9.50 \times 10^{-5} 14;$ α (N+..)=2.48×10⁻⁵ 4 $\alpha(N)=2.11\times10^{-5}$ 3; $\alpha(O)=3.43\times10^{-6}$ 5: $\alpha(P)=2.67\times10^{-7}$ 4 $\alpha = 0.000882 \ 20; \ \alpha(K) = 0.000603 \ 16;$ 1757.1 1 14 641.19 2+ M1+E2-1.6 + 3 - 40.000882 20 α (L)=7.63×10⁻⁵ *19*; $\alpha(M) = 1.58 \times 10^{-5} 4$: α (N+..)=0.000187 3 $\alpha(N)=3.51\times10^{-6}$ 9; $\alpha(O)=5.71\times10^{-7}$ 15; $\alpha(P)=4.42\times10^{-8}$ 12; α (IPF)=0.000183 *3* M1[#] 2398.5 2 78 0 0^{+} 0.000934 13 α =0.000934 13; α (K)=0.000361 5;

 $^{142}_{58}\text{Ce}_{84}$ -7

				¹⁴² Ce(1	n,n'γ) 199	5Va25,1992Al11 ((continued)					
γ ⁽¹⁴² Ce) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	$I_{\gamma}^{@}$	$E_f = J_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments				
	_			<u> </u>				$\alpha(L)=4.51\times10^{-5} 7;$ $\alpha(M)=9.36\times10^{-6} 14;$ $\alpha(N+)=0.000519 8$ $\alpha(N)=2.08\times10^{-6} 3;$ $\alpha(O)=3.39\times10^{-7} 5;$ $\alpha(P)=2.67\times10^{-8} 4;$ $\alpha(IPF)=0.000516 8$				
2539.64	4+	358.7 ^{&} 1	67	2181.88 3+	(M1+E2)	-0.5859	0.0341	$\alpha(K)=0.0289 \ 4; \ \alpha(L)=0.00409 \ 6; \\ \alpha(M)=0.000860 \ 12; \\ \alpha(N+)=0.000223 \ 4 \\ \alpha(N)=0.000190 \ 3; \\ \alpha(O)=3.05\times10^{-5} \ 5; \\ \alpha(P)=2.16\times10^{-6} \ 3 $				
		1320.3 1	18	1219.30 4+	E2 [‡]		0.001162 17	$ \begin{array}{l} \alpha = 0.001162 \ 17; \ \alpha(\mathrm{K}) = 0.000976 \\ 14; \ \alpha(\mathrm{L}) = 0.0001266 \ 18; \\ \alpha(\mathrm{M}) = 2.64 \times 10^{-5} \ 4; \\ \alpha(\mathrm{N}+) = 3.22 \times 10^{-5} \\ \alpha(\mathrm{N}) = 5.84 \times 10^{-6} \ 9; \\ \alpha(\mathrm{O}) = 9.44 \times 10^{-7} \ 14; \\ \alpha(\mathrm{P}) = 7.10 \times 10^{-8} \ 10; \\ \alpha(\mathrm{IPF}) = 2.54 \times 10^{-5} \ 4 \end{array} $				
		1898.6 2	14	641.19 2+	E2 [#]		0.000812 12	$ \begin{array}{l} \alpha = 0.000812 \ 12; \ \alpha(\mathrm{K}) = 0.000489 \ 7; \\ \alpha(\mathrm{L}) = 6.16 \times 10^{-5} \ 9; \\ \alpha(\mathrm{M}) = 1.279 \times 10^{-5} \ 18; \\ \alpha(\mathrm{N}+) = 0.000248 \ 4 \\ \alpha(\mathrm{N}) = 2.84 \times 10^{-6} \ 4; \\ \alpha(\mathrm{O}) = 4.61 \times 10^{-7} \ 7; \\ \alpha(\mathrm{P}) = 3.56 \times 10^{-8} \ 5; \\ \alpha(\mathrm{IPF}) = 0.000245 \ 4 \end{array} $				
2542.82 2543.21	1 2+	2542.8 2 1323.9 <i>1</i> 1902.1 2	100 23 31	$\begin{array}{c} 0 & 0^+ \\ 1219.30 & 4^+ \\ 641.19 & 2^+ \end{array}$	M1+E2	-0.19 +14-10	0.000939 15	$\alpha = 0.000939 \ 15; \ \alpha(K) = 0.000588$ $10; \ \alpha(L) = 7.39 \times 10^{-5} \ 12;$ $\alpha(M) = 1.534 \times 10^{-5} \ 25;$ $\alpha(N+) = 0.000263$ $\alpha(N) = 3.41 \times 10^{-6} \ 6;$ $\alpha(O) = 5.55 \times 10^{-7} \ 9;$ $\alpha(P) = 4.37 \times 10^{-8} \ 8;$ $\alpha(IPF) = 0.000259 \ 4$				
2570.00	5+	2543.1 2 827.4 ^{&} 1	46 13	0 0 ⁺ 1742.97 6 ⁺	(M1+E2)	-0.5 +21-3	0.0042 8	α =0.0042 8; α (K)=0.0036 7; α (L)=0.00048 8; α (M)=9.9×10 ⁻⁵ 16; α (N+)=2.6×10 ⁻⁵ 4 α (N)=2.2×10 ⁻⁵ 4; α (O)=3.6×10 ⁻⁶ 6; α (D)=2.7×10 ⁻⁷ 6				
		1350.7 <i>1</i>	87	1219.30 4+	M1+E2	-0.6 +16-10	0.00139 <i>18</i>	$\alpha = 0.00139 \ 18; \ \alpha(K) = 0.00117 \ 15; \alpha(L) = 0.000149 \ 18; \alpha(M) = 3.1 \times 10^{-5} \ 4; \alpha(N+) = 4.06 \times 10^{-5} \ 12 \alpha(N) = 6.9 \times 10^{-6} \ 9; \alpha(O) = 1.12 \times 10^{-6} \ 14;$				

¹⁴²Ce(n,n' γ) 1995Va25,1992Al11 (continued) $\gamma(^{142}\text{Ce})$ (continued) $I_{\gamma}^{@}$ α^{\dagger} E_i (level) J_i^{π} Eγ \mathbf{E}_{f} \mathbf{J}_{f}^{π} Mult. δ Comments $\alpha(P) = 8.7 \times 10^{-8} 12;$ α (IPF)=3.25×10⁻⁵ 5 $\alpha(K)=0.0446\ 24;\ \alpha(L)=0.0073$ 2576.16 3^{+} 297.8 1 15 2278.07 4+ M1+E2 1.1 + 6 - 40.0539 21 3; $\alpha(M)=0.00155$ 7; α(N+..)=0.000396 14 $\alpha(N) = 0.000340 \ 13;$ $\alpha(O)=5.31\times10^{-5}$ 13; $\alpha(P) = 3.2 \times 10^{-6} 3$ 394.0[&] 1 19 2181.88 3+ (M1+E2) 0.5 + 5 - 40.0270 22 $\alpha(K)=0.0230\ 21;\ \alpha(L)=0.00317$ 9; $\alpha(M)=0.000664$ 15; α(N+..)=0.000172 5 $\alpha(N)=0.000147$ 4; $\alpha(O)=2.36\times10^{-5}$ 9; $\alpha(P)=1.72\times10^{-6}\ 20$ $\alpha(K)=0.01143$ 16; 531.9 1 31 2044.43 4+ M1(+E2) 0.00 + 6 - 90.01331 $\alpha(L)=0.001494\ 21$: $\alpha(M) = 0.000311 5;$ α (N+..)=8.12×10⁻⁵ 12 $\alpha(N)=6.91\times10^{-5}$ 10; $\alpha(O)=1.124\times10^{-5}$ 16; $\alpha(P) = 8.67 \times 10^{-7}$ 13 923.4 1 1652.85 3-12 1039.9 1 24 1536.27 2+ M1+E2 -0.8 + 4 - 70.00234 25 α=0.00234 25; α(K)=0.00201 22: $\alpha(L)=0.000261$ 25: $\alpha(M) = 5.4 \times 10^{-5} 5;$ α (N+..)=1.42×10⁻⁵ 14 $\alpha(N)=1.21\times10^{-5}$ 12; $\alpha(O) = 1.96 \times 10^{-6}$ 19; $\alpha(P)=1.50\times10^{-7}$ 18 2598.22 2^{+} 1062.0 1 1536.27 2+ M1+E2 -0.26 + 11 - 7 $\alpha = 0.00248 5; \alpha(K) = 0.00214 4;$ 54 0.00248 5 α (L)=0.000274 5; $\alpha(M) = 5.69 \times 10^{-5} 11;$ α (N+..)=1.49×10⁻⁵ 3 $\alpha(N) = 1.264 \times 10^{-5} 23;$ $\alpha(O)=2.06\times10^{-6}$ 4; $\alpha(P)=1.60\times10^{-7}$ 4 E2[#] *α*=0.000899 *13*; *α*(K)=0.000278 0^{+} 0.000899 13 2598.02 46 0 4: $\alpha(L)=3.45\times10^{-5}$ 5: $\alpha(M) = 7.16 \times 10^{-6} 10;$ α (N+..)=0.000579 9 $\alpha(N)=1.588\times10^{-6}$ 23; $\alpha(O)=2.59\times10^{-7}$ 4: $\alpha(P)=2.02\times10^{-8}$ 3: α (IPF)=0.000577 8 2602.48 $(3,2)^+$ 557.7 1 13 2044.43 4+ 1066.1 & 2 1536.27 2+ 0.0021 3 α =0.0021 3; α (K)=0.0018 3; <4 (M1+E2) 1.2 +23-7 α (L)=0.00023 *3*; $\alpha(M) = 4.8 \times 10^{-5}$ 7; α (N+..)=1.25×10⁻⁵ 17 $\alpha(N)=1.07\times 10^{-5}$ 14; $\alpha(O) = 1.73 \times 10^{-6} 23;$ $\alpha(P)=1.31\times10^{-7} 21$ 1383.3 1 15 1219.30 4+ M1+E21.1 +6-4 0.00123 8 $\alpha = 0.00123 \ 8; \ \alpha(K) = 0.00103 \ 7;$

¹⁴²Ce(n,n' γ) 1995Va25,1992Al11 (continued) γ ⁽¹⁴²Ce) (continued) α^{\dagger} $I_{\gamma}^{(0)}$ E_i(level) \mathbf{J}_i^{π} Eγ \mathbf{E}_{f} \mathbf{J}_{f}^{π} Mult. δ Comments $\alpha(L)=0.000131 9;$ $\alpha(M)=2.73\times10^{-5}$ 17; α (N+..)=4.82×10⁻⁵ 9 $\alpha(N) = 6.1 \times 10^{-6} 4;$ $\alpha(O) = 9.8 \times 10^{-7}$ 7; $\alpha(P)=7.6\times10^{-8}$ 6; α (IPF)=4.11×10⁻⁵ 6 0.000930 13 α=0.000930 13; α(K)=0.000553 2602.48 $(3,2)^+$ 1961.5 1 68 641.19 2+ M1(+E2) 0.03 3 8; α (L)=6.95×10⁻⁵ 10; $\alpha(M) = 1.442 \times 10^{-5} 21;$ α (N+..)=0.000293 $\alpha(N) = 3.20 \times 10^{-6} 5;$ $\alpha(O) = 5.22 \times 10^{-7} 8;$ $\alpha(P)=4.11\times10^{-8}$ 6; α (IPF)=0.000289 4 2606.40 4^{+} 1387.1 1 86 1219.30 4+ M1+E2 1.1 +4-4 0.00123 8 $\alpha = 0.00123 \ 8; \ \alpha(K) = 0.00102 \ 7;$ α (L)=0.000131 8; $\alpha(M) = 2.72 \times 10^{-5} 17;$ α (N+..)=4.92×10⁻⁵ 9 $\alpha(N) = 6.0 \times 10^{-6} 4;$ $\alpha(O) = 9.8 \times 10^{-7}$ 7; $\alpha(P) = 7.5 \times 10^{-8} 6;$ α (IPF)=4.22×10⁻⁵ 6 1965.2 1 14 641.19 2+ 1536.27 2+ $\alpha = 0.00219 3; \alpha(K) = 0.00188 3;$ 2667.17 1130.9 1 21 0.00219 3 1 M1 α (L)=0.000240 4; $\alpha(M)=5.00\times10^{-5}$ 7; α (N+..)=1.412×10⁻⁵ 20 $\alpha(N) = 1.110 \times 10^{-5} 16;$ $\alpha(O) = 1.81 \times 10^{-6} 3;$ $\alpha(P)=1.413\times10^{-7}$ 20; α (IPF)=1.071×10⁻⁶ 16 2026.1 2 30 641.19 2+ M1 0.000920 13 α=0.000920 13; α(K)=0.000516 8; α (L)=6.48×10⁻⁵ 9; $\alpha(M) = 1.344 \times 10^{-5}$ 19; α (N+..)=0.000326 5 $\alpha(N)=2.99\times10^{-6}$ 5; $\alpha(O) = 4.87 \times 10^{-7}$ 7; $\alpha(P)=3.83\times10^{-8}$ 6; α (IPF)=0.000322 5 D[#] 2667.0 2 49 0 0^+ $(2,3,4)^+$ 641.19 2+ M1(+E2) 0.000918 14 $\alpha = 0.000918 \ 14; \ \alpha(K) = 0.000509$ 2680.40 2039.2 2 100 0.06 + 14 - 98; $\alpha(L)=6.38\times10^{-5}$ 10; $\alpha(M) = 1.325 \times 10^{-5} 20$: α (N+..)=0.000332 $\alpha(N)=2.94\times10^{-6}$ 5; $\alpha(O) = 4.80 \times 10^{-7} 8;$ $\alpha(P)=3.78\times10^{-8}$ 6; α (IPF)=0.000329 5 2697.01 $2,(3)^+$ 1044.1 1 41 1652.85 3-1536.27 2+ 1160.8 1 27 M1+E2 -0.19 17 0.00204 6 $\alpha = 0.00204 6$; α (K)=0.00176 5; α (L)=0.000224 6; $\alpha(M) = 4.66 \times 10^{-5} 12;$

γ ⁽¹⁴²Ce) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	Eγ	Ι _γ @	$E_f J_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
2697.01	2,(3)+	2055.8 2	32	641.19 2+	M1+E2	-1.2 +7-19	0.00085 5	$ \frac{\alpha(N+)=1.47\times10^{-5} 4}{\alpha(N)=1.04\times10^{-5} 3;} \\ \frac{\alpha(O)=1.69\times10^{-6} 5;}{\alpha(P)=1.32\times10^{-7} 4;} \\ \frac{\alpha(IPF)=2.54\times10^{-6} 4}{\alpha=0.00085 5; \alpha(K)=0.00045 3;} \\ \frac{\alpha(L)=5.7\times10^{-5} 4;}{\alpha(M)=1.18\times10^{-5} 8;} \\ \frac{\alpha(N+)=0.000330 9}{\alpha(N)=2.63\times10^{-6} 18;} \\ \frac{\alpha(N)=2.63\times10^{-6} 18;}{\alpha(N)=2.10\times10^{-7} 3;} \\ $
2698.50	4+	1479.2 <i>1</i>	100	1219.30 4+	M1+E2	1.3 +18-3	0.00108 8	$\alpha(0)=4.3 \times 10^{-5} 3;$ $\alpha(P)=3.3 \times 10^{-8} 3;$ $\alpha(IPF)=0.000327 9$ $\alpha=0.00108 8; \alpha(K)=0.00087 7;$ $\alpha(L)=0.000111 9;$ $\alpha(M)=2.32 \times 10^{-5} 18;$ $\alpha(N+)=7.68 \times 10^{-5} 14$
2715.07	3+	1178.8 <i>1</i>	20	1536.27 2+	M1+E2	-0.8 +4-4	0.00177 <i>15</i>	$\alpha(N)=5.1\times10^{-6} 4;$ $\alpha(O)=8.3\times10^{-7} 7;$ $\alpha(P)=6.4\times10^{-8} 6;$ $\alpha(IPF)=7.08\times10^{-5} 11$ $\alpha=0.00177 15; \alpha(K)=0.00152$ $13; \alpha(L)=0.000196 15;$ $\alpha(M)=4.1\times10^{-5} 3;$ $\alpha(N+)=1.46\times10^{-5} 8$
		1495.8 <i>1</i>	50	1219.30 4+	M1+E2	0.37 7	0.001206 <i>21</i>	$\alpha(N)=9.0\times10^{-6} 7;$ $\alpha(O)=1.47\times10^{-6} 12;$ $\alpha(P)=1.13\times10^{-7} 10;$ $\alpha(IPF)=3.94\times10^{-6} 6$ $\alpha=0.001206 21; \alpha(K)=0.000973$ $17; \alpha(L)=0.0001233 21;$ $\alpha(M)=2.56\times10^{-5} 5;$ $\alpha(N+)=8.40\times10^{-5}$ $\alpha(N)=5.69\times10^{-6} 10;$
		2073.7 2	30	641.19 2+	M1(+E2)	-0.03 6	0.000916 <i>13</i>	$\begin{aligned} &\alpha(0) = 9.27 \times 10^{-7} \ I6; \\ &\alpha(P) = 7.25 \times 10^{-8} \ I3; \\ &\alpha(IPF) = 7.73 \times 10^{-5} \ I1 \\ &\alpha = 0.000916 \ I3; \ \alpha(K) = 0.000491 \\ &7; \ \alpha(L) = 6.16 \times 10^{-5} \ 9; \\ &\alpha(M) = 1.278 \times 10^{-5} \ I8; \\ &\alpha(N+) = 0.000350 \ 5 \\ &\alpha(N) = 2.84 \times 10^{-6} \ 4; \end{aligned}$
2725.68	5+	982.7 <i>1</i>	32	1742.97 6+	M1(+E2)	-0.13 +19-14	0.00302 7	$\alpha(O)=4.63\times10^{-7} 7;$ $\alpha(P)=3.65\times10^{-8} 6;$ $\alpha(IPF)=0.000347 5$ $\alpha=0.00302 7; \alpha(K)=0.00260 6;$ $\alpha(L)=0.000333 7;$ $\alpha(M)=6.92\times10^{-5} 14;$ $\alpha(N+)=1.81\times10^{-5} 4$ $\alpha(N)=1.54\times10^{-5} 3;$
		1506.4 2	68	1219.30 4+	M1+E2	0.09 +4-3	0.001223 18	$\alpha(0)=2.50\times10^{-5} 6;$ $\alpha(P)=1.95\times10^{-7} 5$ $\alpha=0.001223 \ 18; \ \alpha(K)=0.000984$

$\gamma(^{142}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}	$I_{\gamma}^{@}$	$E_f \underline{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
	_		_					$14; \alpha(L)=0.0001245 \ 18; \\ \alpha(M)=2.59\times10^{-5} \ 4; \\ \alpha(N+)=8.81\times10^{-5} \\ \alpha(N)=5.74\times10^{-6} \ 9; \\ \alpha(O)=9.36\times10^{-7} \ 14; \\ \alpha(P)=7.34\times10^{-8} \ 11; \\ \alpha(IPF)=8.13\times10^{-5} \ 12$
2727.81	2 ⁽⁻⁾	1074.9 <i>1</i>	11	1652.85 3-	M1+E2	-2.0 +7-9	0.00188 <i>13</i>	$\alpha = 0.00188 \ I3; \ \alpha(K) = 0.00161$ $I2; \ \alpha(L) = 0.000212 \ I3;$ $\alpha(M) = 4.4 \times 10^{-5} \ 3;$ $\alpha(N+) = 1.15 \times 10^{-5} \ 8$ $\alpha(N) = 9.8 \times 10^{-6} \ 6;$ $\alpha(O) = 1.58 \times 10^{-6} \ I0;$ $\alpha(P) = 1.18 \times 10^{-7} \ 9$
		1191.6 <i>1</i> 2086.6 <i>1</i>	47 42	$\begin{array}{cccc} 1536.27 & 2^+ \\ 641.19 & 2^+ \end{array}$				
2734.70	(3,2)+	622.7 ^{&} 1	24	2111.80 4+	(M1+E2)	0.19 25	0.0089 4	$\alpha = 0.0089 \ 4; \ \alpha(K) = 0.0077 \ 4; \alpha(L) = 0.00100 \ 4; \alpha(M) = 0.000208 \ 8; \alpha(N+) = 5.43 \times 10^{-5} \ 20 \alpha(N) = 4.62 \times 10^{-5} \ 17; \alpha(O) = 7.5 \times 10^{-6} \ 3; \alpha(P) = 5 \ 8 \times 10^{-7} \ 3$
		1081.9 <i>1</i>	14	1652.85 3-	M1(+E2)	-0.09 +12-20	0.00242 6	$\alpha = 0.00242 \ 6; \ \alpha(K) = 0.00208 \ 6; \alpha(L) = 0.000266 \ 7; \alpha(M) = 5.53 \times 10^{-5} \ 13; \alpha(N+) = 1.44 \times 10^{-5} \ 4 \alpha(N) = 1.23 \times 10^{-5} \ 3; \alpha(O) = 2.00 \times 10^{-6} \ 5; \alpha(D) = 1.56 \times 10^{-7} \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ $
		1515.4 2	39	1219.30 4+	M1+E2	-0.29 +23-18	0.00119 <i>4</i>	$\alpha(P)=1.36\times10^{-5} S$ $\alpha=0.00119 4; \ \alpha(K)=0.00096 3;$ $\alpha(L)=0.000121 4;$ $\alpha(M)=2.51\times10^{-5} 7;$ $\alpha(N+)=9.10\times10^{-5} 14$ $\alpha(N)=5.58\times10^{-6} 16;$ $\alpha(O)=9.1\times10^{-7} 3;$ $\alpha(P)=7.12\times10^{-8} 22;$ (ID)
		2093.3 2	24	641.19 2+	M1+E2	5.2 +5-22	0.000815 14	$\alpha(1PF) = 8.45 \times 10^{-5} 12$ $\alpha = 0.000815 14;$ $\alpha(K) = 0.000412 8;$ $\alpha(L) = 5.16 \times 10^{-5} 10;$ $\alpha(M) = 1.070 \times 10^{-5} 20;$ $\alpha(N+) = 0.000341$ $\alpha(N) = 2.37 \times 10^{-6} 5;$ $\alpha(O) = 3.86 \times 10^{-7} 7;$ $\alpha(P) = 3.00 \times 10^{-8} 6;$ $\alpha(PE) = 0.000338 5$
2741.90	(2,3)	1089.0 <i>1</i> 2100.9 2	22 78	1652.85 3 ⁻ 641.19 2 ⁺	M1+E2	-0.32 14	0.000905 16	$\alpha(M + 1) = 0.0000000000000000000000000000000000$

$\gamma(^{142}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^π	Eγ	Ι _γ @	$E_f J_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
27(7.90	(1.2.2)	1115.0.1	17	1652.95 2-				$\alpha(N)=2.72\times10^{-6} 6;\alpha(O)=4.44\times10^{-7} 9;\alpha(P)=3.49\times10^{-8} 7;\alpha(IPF)=0.000359 6$
2707.80	(1,2,3)	1113.0 <i>T</i> 1231.5 <i>T</i>	22	1536.27 2+	M1+E2	0.47 +3-19	0.00172 6	$\alpha = 0.00172 \ 6; \ \alpha(K) = 0.00147 \ 5; \alpha(L) = 0.000188 \ 6; \alpha(M) = 3.91 \times 10^{-5} \ 13; \alpha(N+) = 2.03 \times 10^{-5} \ 4 \alpha(N) = 8.7 \times 10^{-6} \ 3; \alpha(O) = 1.41 \times 10^{-6} \ 5; \alpha(P) = 1.10 \times 10^{-7} \ 4; $
		2126.5 2	61	641.19 2+	M1+E2	-0.19 8	0.000910 <i>14</i>	$\alpha(IPF)=1.008\times10^{-5} 15$ $\alpha=0.000910 14;$ $\alpha(K)=0.000463 7;$ $\alpha(L)=5.80\times10^{-5} 9;$ $\alpha(M)=1.204\times10^{-5} 18;$ $\alpha(N+)=0.000377 6$ $\alpha(N)=2.67\times10^{-6} 4;$ $\alpha(O)=4.36\times10^{-7} 7;$ $\alpha(P)=3.43\times10^{-8} 6;$ $\alpha(IPF)=0.000374 6$
2773.85	(3)	661.5 ^{&} 1	16	2111.80 4+	(M1+E2)	0.19 25	0.0077 4	$\alpha = 0.0077 \ 4; \ \alpha(K) = 0.0066 \ 3; \\ \alpha(L) = 0.00086 \ 4; \\ \alpha(M) = 0.000179 \ 7; \\ \alpha(N+) = 4.68 \times 10^{-5} \ 18 \\ \alpha(N) = 3.98 \times 10^{-5} \ 15; \\ \alpha(O) = 6.47 \times 10^{-6} \ 25; \\ \alpha(O) = 5.0 \ 10^{-7} \ 2.5; $
		1237.6 <i>1</i>	15	1536.27 2+	M1+E2	0.40 +23-18	0.00172 8	$\alpha(P)=5.0\times10^{-4} 3$ $\alpha=0.00172 \ 8; \ \alpha(K)=0.00148 \ 7;$ $\alpha(L)=0.000188 \ 8;$ $\alpha(M)=3.91\times10^{-5} \ 16;$ $\alpha(N+)=2.12\times10^{-5} \ 5$ $\alpha(N)=8.7\times10^{-6} \ 4;$ $\alpha(O)=1.41\times10^{-6} \ 6;$ $\alpha(P)=1.10\times10^{-7} \ 6;$
		1553.8 2	17	1219.30 4+	M1+E2	-0.9 +5-10	0.00106 9	$\alpha(\text{IPF})=1.094\times10^{-5} \ 16$ $\alpha=0.00106 \ 9; \ \alpha(\text{K})=0.00083 \ 7;$ $\alpha(\text{L})=0.000105 \ 9;$ $\alpha(\text{M})=2.18\times10^{-5} \ 18;$ $\alpha(\text{N}+)=0.0001038 \ 20$ $\alpha(\text{N})=4.8\times10^{-6} \ 4;$ $\alpha(\text{O})=7.9\times10^{-7} \ 7;$ $\alpha(\text{P})=6.1\times10^{-8} \ 6;$ $\alpha(\text{PE})=0.81\times10^{-5} \ 17$
		2133.3 2	52	641.19 2+	M1+E2	0.19 +3-7	0.000910 <i>13</i>	$\alpha(\text{II} \text{ r}) = 9.01\times10^{-7} \text{ I/}$ $\alpha = 0.000910 \text{ I3};$ $\alpha(\text{K}) = 0.000460 \text{ 7};$ $\alpha(\text{L}) = 5.77\times10^{-5} \text{ 9};$ $\alpha(\text{M}) = 1.196\times10^{-5} \text{ I8};$ $\alpha(\text{N}+) = 0.000380 \text{ 6};$ $\alpha(\text{N}) = 2.66\times10^{-6} \text{ 4};$ $\alpha(\text{O}) = 4.33\times10^{-7} \text{ 7};$ $\alpha(\text{P}) = 3.41\times10^{-8} \text{ 5};$ $\alpha(\text{IPF}) = 0.000377 \text{ 6};$

γ ⁽¹⁴²Ce) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	Eγ	$I_{\gamma}^{@}$	$E_f J_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
2784.71 2800.72	(3,4,5) 1 ⁽⁺⁾	1565.4 2 1264.4 1	100 33	1219.30 4 ⁺ 1536.27 2 ⁺	M1		0.001710 24	$\alpha = 0.001710 \ 24; \ \alpha(K) = 0.001461 21; \ \alpha(L) = 0.000186 \ 3; \alpha(M) = 3.86 \times 10^{-5} \ 6; \alpha(N+) = 2.51 \times 10^{-5} \ 4 \alpha(N) = 8.57 \times 10^{-6} \ 12;$
		2160.0 2	11	641.19 2+	M1		0.000913 <i>13</i>	$\begin{aligned} &\alpha(\text{O})=1.397\times10^{-6}\ 20;\\ &\alpha(\text{P})=1.093\times10^{-7}\ 16;\\ &\alpha(\text{IPF})=1.504\times10^{-5}\ 22\\ &\alpha=0.000913\ 13;\ \alpha(\text{K})=0.000450\\ &7;\ \alpha(\text{L})=5.64\times10^{-5}\ 8;\\ &\alpha(\text{M})=1.170\times10^{-5}\ 17;\\ &\alpha(\text{N}+)=0.000395\ 6\\ &\alpha(\text{N})=2.60\times10^{-6}\ 4;\\ &\alpha(\text{O})=4.24\times10^{-7}\ 6;\\ &\alpha(\text{P})=3.34\times10^{-8}\ 5;\\ &\alpha(\text{IPF})=0.000392\ 6\\ &\text{L}_{v}:\ \text{In the Table 1 in 1995Va25} \end{aligned}$
		2800 4 2	56	0 0+	D#			authors give branching ratio $2160-\gamma$ as 56 and $2800-\gamma$ as 11, but it seems to be a misprint as data from (γ, γ') and La β - decay show that $2800-\gamma$ is more intensive.
2806.35	3+	1270.2 <i>I</i>	41	1536.27 2+	M1+E2	-0.16 +8-11	0.00168 <i>3</i>	$\alpha = 0.00168 \ 3; \ \alpha(K) = 0.00144 \ 3;$ $\alpha(L) = 0.000183 \ 4;$ $\alpha(M) = 3.80 \times 10^{-5} \ 7;$ $\alpha(N+) = 2.59 \times 10^{-5} \ 4$ $\alpha(N) = 8.43 \times 10^{-6} \ 15;$ $\alpha(O) = 1.374 \times 10^{-6} \ 25;$ $\alpha(P) = 1.074 \times 10^{-7} \ 21;$
		1586.9 2	17	1219.30 4+	M1(+E2)	0.3 +5-3	0.00111 8	$\alpha(\text{IPF})=1.599\times10^{-5} 23$ $\alpha=0.00111 \ 8; \ \alpha(\text{K})=0.00086 \ 7;$ $\alpha(\text{L})=0.000109 \ 8;$ $\alpha(\text{M})=2.27\times10^{-5} \ 16;$ $\alpha(\text{N}+)=0.0001181 \ 22$ $\alpha(\text{N})=5.0\times10^{-6} \ 4;$
		2164.8 2	42	641.19 2+	M1+E2	0.43 +8-4	0.000899 <i>14</i>	$\alpha(O)=8.2\times10^{-7} 6;$ $\alpha(P)=6.4\times10^{-8} 5;$ $\alpha(IPF)=0.0001122 19$ $\alpha=0.000899 14; \alpha(K)=0.000438$ $7; \alpha(L)=5.49\times10^{-5} 9;$ $\alpha(M)=1.139\times10^{-5} 18;$ $\alpha(N+)=0.000394 6$ $\alpha(N)=2.53\times10^{-6} 4;$ $\alpha(O)=4.12\times10^{-7} 7;$ $\alpha(P)=3.24\times10^{-8} 6;$ $\alpha(IPF)=0.000391 6$
2842.48	(2,3)	838.0 2 1623.0 2 2201.1 2	<1 12 87	$\begin{array}{cccc} 2004.84 & 2^+ \\ 1219.30 & 4^+ \\ 641.19 & 2^+ \end{array}$	M1+E2	-0.26 +4-15	0.000909 15	$\alpha = 0.000909 \ 15; \ \alpha(K) = 0.000429$

$\gamma(^{142}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Ι _γ @	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
									$\alpha(M)=1.114\times10^{-5} 20;\alpha(N+)=0.000415\alpha(N)=2.47\times10^{-6} 5;\alpha(O)=4.04\times10^{-7} 8;\alpha(P)=3.18\times10^{-8} 6;\alpha(IPF)=0.000412 6$
2853.28	2'	1634.2 2 2212.3 2	<0.3 64	1219.30 641.19	4' 2+	M1+E2	-0.5 +15-3	0.00090 <i>3</i>	$\alpha = 0.00090 \ 3; \ \alpha(K) = 0.000416 \ 19;$ $\alpha(L) = 5.21 \times 10^{-5} \ 23;$ $\alpha(M) = 1.08 \times 10^{-5} \ 5;$ $\alpha(N+) = 0.000417 \ 10$ $\alpha(N) = 2.40 \times 10^{-6} \ 11;$ $\alpha(O) = 3.91 \times 10^{-7} \ 18;$ $\alpha(P) = 3.08 \times 10^{-8} \ 15;$ $\alpha(IPF) = 0.000414 \ 10$
		2852.8 2	36	0	0+	E2 [#]		0.000966 14	$\begin{aligned} &\alpha = 0.000966 \ 14; \ \alpha(\text{K}) = 0.000236 \\ &4; \ \alpha(\text{L}) = 2.92 \times 10^{-5} \ 4; \\ &\alpha(\text{M}) = 6.05 \times 10^{-6} \ 9; \\ &\alpha(\text{N} = 1.344 \times 10^{-6} \ 19; \\ &\alpha(\text{O}) = 1.344 \times 10^{-6} \ 19; \\ &\alpha(\text{O}) = 2.19 \times 10^{-7} \ 3; \\ &\alpha(\text{P}) = 1.717 \times 10^{-8} \ 24; \\ &\alpha(\text{IPF}) = 0.000693 \ 10 \end{aligned}$
2859.68	4	1206.7 <i>1</i> 1640.9 <i>2</i>	78 22	1652.85 1219.30	3- 4+				
2868.90	(4)	1216.1 <i>1</i> 1649.4 2	39 35	1652.85 1219.30	3 ⁻ 4 ⁺	M1+E2	-0.4 +3-4	0.00105 6	$\alpha = 0.00105 \ 6; \ \alpha(K) = 0.00078 \ 5;$ $\alpha(L) = 9.9 \times 10^{-5} \ 6;$ $\alpha(M) = 2.06 \times 10^{-5} \ 12;$ $\alpha(N+) = 0.000144 \ 3$ $\alpha(N) = 4.6 \times 10^{-6} \ 3;$ $\alpha(O) = 7.4 \times 10^{-7} \ 5;$ $\alpha(P) = 5.8 \times 10^{-8} \ 4;$ $\alpha(IPF) = 0.0001384 \ 23$
2887.66	3	2228.3 ^{&} 2 1668.4 2	26 22	641.19 1219.30	2+ 4+	M1+E2	1.1 +17-6	0.00095 7	$\alpha = 0.00095 \ 7; \ \alpha(K) = 0.00070 \ 6;$ $\alpha(L) = 8.8 \times 10^{-5} \ 8;$ $\alpha(M) = 1.83 \times 10^{-5} \ 15;$ $\alpha(N+) = 0.000149 \ 3$ $\alpha(N) = 4.1 \times 10^{-6} \ 4;$ $\alpha(O) = 6.6 \times 10^{-7} \ 6;$ $\alpha(P) = 5.1 \times 10^{-8} \ 5;$ $\alpha(PE) = 0.000145 \ 3$
		2246.4 2	78	641.19	2+	M1+E2	0.9 +12-3	0.00088 4	$\alpha(N) = 0.000148 \ 3$ $\alpha = 0.00088 \ 4; \ \alpha(K) = 0.000390 \ 21;$ $\alpha(L) = 4.9 \times 10^{-5} \ 3;$ $\alpha(M) = 1.01 \times 10^{-5} \ 6;$ $\alpha(N) = 2.25 \times 10^{-6} \ 13;$ $\alpha(O) = 3.66 \times 10^{-7} \ 21;$ $\alpha(P) = 2.87 \times 10^{-8} \ 18;$ $\alpha(IPF) = 0.000426 \ 12$
2933.91	(2,3,4)	1398.8 ^{&} 2 2292.7 2	100	1536.27 641.19	2+ 2+				

142 Ce(n,n' γ) 1995Va25,1992A111 (continued)									
γ ⁽¹⁴² Ce) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	$I_{\gamma}^{@}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments	
2956.31	3	1737.1 <i>2</i> 2315.0 <i>2</i>	34 66	1219.30 4 ⁺ 641.19 2 ⁺	M1(+E2)	0.06 +7-9	0.001013 <i>15</i> 0.00090 <i>5</i>	$ \begin{array}{c} \alpha = 0.001013 \ 15; \ \alpha(\text{K}) = 0.000720 \\ 11; \ \alpha(\text{L}) = 9.07 \times 10^{-5} \ 13; \\ \alpha(\text{M}) = 1.88 \times 10^{-5} \ 3; \\ \alpha(\text{N}) = 0.00184 \ 3 \\ \alpha(\text{N}) = 4.18 \times 10^{-6} \ 6; \\ \alpha(\text{O}) = 6.82 \times 10^{-7} \ 10; \\ \alpha(\text{P}) = 5.36 \times 10^{-8} \ 8; \\ \alpha(\text{IPF}) = 0.000179 \ 3 \\ \alpha = 0.00090 \ 5; \ \alpha(\text{K}) = 0.000376 \\ 24; \ \alpha(\text{L}) = 4.7 \times 10^{-5} \ 3; \\ \end{array} $	
2008.07	1	2259 2 2		(41.10.2*				24; $\alpha(L)=4.7\times10^{-5}$ 5; $\alpha(M)=9.8\times10^{-6}$ 7; $\alpha(N+)=0.000468$ 16 $\alpha(N)=2.17\times10^{-6}$ 14; $\alpha(O)=3.53\times10^{-7}$ 23; $\alpha(P)=2.78\times10^{-8}$ 20; $\alpha(IPF)=0.000465$ 16	
2998.97	1	2358.3 2 2998.4 2	66 34	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
3009.81		2368.6 2	100	641.19 2+					
3011.93 3042.21	1	3011.9 2 1822.9 2	100 54	$\begin{array}{c} 0 & 0^+ \\ 1219.30 & 4^+ \end{array}$	M1+E2	-0.37 10	0.000953 17	$\alpha = 0.000953 \ 17; \ \alpha(K) = 0.000634$ 12; \(\alpha(L) = 7.98 \times 10^{-5} \ 15; \) \(\alpha(M) = 1.66 \times 10^{-5} \ 3; \) \(\alpha(N) = 3.68 \times 10^{-6} \ 7; \) \(\alpha(O) = 6.00 \times 10^{-7} \ 11; \) \(\alpha(P) = 4.70 \times 10^{-8} \ 9; \) \(\alpha(IPF) = 0.000219 \ 4\)	
		2401.0 2	46	641.19 2+					
3051.71	(3)	864.6 [°] 2	60	2187.46 1-					
		1398.8 [°] <i>1</i> 1832.6 2	69 23	1652.85 3 ⁻ 1219.30 4 ⁺	M1+E2	<-0.6	0.000948 24	$\alpha = 0.000948 \ 24; \ \alpha(K) = 0.000625 18; \ \alpha(L) = 7.87 \times 10^{-5} \ 23; \alpha(M) = 1.63 \times 10^{-5} \ 5; \alpha(N+) = 0.000228 \ 4 \alpha(N) = 3.63 \times 10^{-6} \ 11; \alpha(O) = 5.91 \times 10^{-7} \ 18; \alpha(P) = 4.64 \times 10^{-8} \ 15; \alpha(IPF) = 0.000223 \ 4$	
		2410.3 2	12	641.19 2+	M1(+E2)	0.09 14	0.000935 14	$\alpha = 0.000935 \ 14; \ \alpha(K) = 0.000357 6; \ \alpha(L) = 4.46 \times 10^{-5} \ 7; \alpha(M) = 9.25 \times 10^{-6} \ 14; \alpha(N+) = 0.000524 \ 8 \alpha(N) = 2.05 \times 10^{-6} \ 3; \alpha(O) = 3.35 \times 10^{-7} \ 5; \alpha(P) = 2.64 \times 10^{-8} \ 4; \alpha(P) = 2.000522 \ 8 \\ \alpha(D) = 0.000522 \ 8 \\ \alpha(D) = 0.00052 \ 8 \\ \alpha(D)$	
3061.39		1525.5 2	37	1536.27 2+	M1(+E2)	-0.09 +15-14	0.001198 20	$\alpha(N^{-1}) = 0.000522 \delta$ $\alpha = 0.001198 \ 20; \ \alpha(K) = 0.000957 \ 17; \ \alpha(L) = 0.0001211 \ 21; \ \alpha(M) = 2.51 \times 10^{-5} \ 5; \ \alpha(N+) = 9.49 \times 10^{-5} \ \alpha(N) = 5.58 \times 10^{-6} \ 10; \ \alpha(O) = 9.10 \times 10^{-7} \ 16;$	

γ ⁽¹⁴²Ce) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	Eγ	$I_{\gamma}^{@}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
3061.39		2419.8 2	63	641.19 2+	M1+E2	-0.26 17	0.000932 15	$\begin{aligned} &\alpha(\mathrm{P}){=}7.14{\times}10^{-8}\ I3; \\ &\alpha(\mathrm{IPF}){=}8.84{\times}10^{-5}\ I3 \\ &\alpha{=}0.000932\ I5;\ \alpha(\mathrm{K}){=}0.000352\ 7; \\ &\alpha(\mathrm{L}){=}4.40{\times}10^{-5}\ 8; \\ &\alpha(\mathrm{M}){=}9.12{\times}10^{-6}\ I6; \\ &\alpha(\mathrm{N}{=}.){=}0.000527\ 8 \\ &\alpha(\mathrm{N}){=}2.02{\times}10^{-6}\ 4; \\ &\alpha(\mathrm{O}){=}3.30{\times}10^{-7}\ 6; \\ &\alpha(\mathrm{P}){=}2.60{\times}10^{-8}\ 5; \\ &\alpha(\mathrm{IPF}){=}0.000525\ 8 \end{aligned}$
3089.61	(2,3)	978.1 [∞] 2 2448.4 2	28 72	2111.80 4 ⁺ 641.19 2 ⁺	M1+E2	-0.8 +3-4	0.000912 20	$\alpha = 0.000912 \ 20; \ \alpha(K) = 0.000331 \ 9;$ $\alpha(L) = 4.13 \times 10^{-5} \ 12;$ $\alpha(M) = 8.57 \times 10^{-6} \ 24;$ $\alpha(N) = 1.90 \times 10^{-6} \ 6;$ $\alpha(O) = 3.10 \times 10^{-7} \ 9;$ $\alpha(P) = 2.44 \times 10^{-8} \ 8;$ $\alpha(IPF) = 0.000528 \ 11$
3105.96	3	1887.5 2	19	1219.30 4+	M1+E2	2.5 +6-23	0.00083 12	$\alpha = 0.00083 \ I2; \ \alpha(K) = 0.00051 \ 9; \\ \alpha(L) = 6.4 \times 10^{-5} \ I1; \\ \alpha(M) = 1.33 \times 10^{-5} \ 23; \\ \alpha(N+) = 0.000245 \ I1 \\ \alpha(N) = 3.0 \times 10^{-6} \ 5; \ \alpha(O) = 4.8 \times 10^{-7} \\ 9; \ \alpha(P) = 3.7 \times 10^{-8} \ 8; \\ \alpha(IPF) = 0.000242 \ I1 \\ \alpha(DF) = 0.000242 \ II \\ \alpha(DF) = $
		2463.9 2	81	641.19 2+	M1+E2	-2.0 +5-4	0.000884 15	$\alpha(\text{III})=0.000242 \text{ III}$ $\alpha=0.000884 \text{ 15; } \alpha(\text{K})=0.000313 \text{ 6;}$ $\alpha(\text{L})=3.89\times10^{-5} \text{ 8;}$ $\alpha(\text{M})=8.07\times10^{-6} \text{ 16;}$ $\alpha(\text{N}=1.79\times10^{-6} \text{ 4;}$ $\alpha(\text{O})=2.92\times10^{-7} \text{ 6;}$ $\alpha(\text{P})=2.28\times10^{-8} \text{ 5;}$ $\alpha(\text{PF})=0.000522 \text{ 9}$
3109.71		1890.3 2	70	1219.30 4+				u(III)=0.000522)
3125.61	(1 2 3)	2468.6 2 2484 4 2	30	$641.19 \ 2^+$ $641.19 \ 2^+$				
3144.50	3+	1608.4 2	51	1536.27 2+	M1+E2	-2.0 +20-6	0.00094 18	$\alpha = 0.00094 \ 18; \ \alpha(K) = 0.00070 \ 15; \\ \alpha(L) = 9.0 \times 10^{-5} \ 19; \\ \alpha(M) = 1.9 \times 10^{-5} \ 4; \\ \alpha(N+) = 0.000123 \ 5 \\ \alpha(N) = 4.1 \times 10^{-6} \ 9; \ \alpha(O) = 6.7 \times 10^{-7} \\ 14; \ \alpha(P) = 5.2 \times 10^{-8} \ 12; \\ \alpha(IPF) = 0.000118 \ 4$
		2503.1 2	49	641.19 2+	M1+E2	-0.8 +3-4	0.000923 20	$\alpha = 0.000923 \ 20; \ \alpha(K) = 0.000317 \ 8;$ $\alpha(L) = 3.96 \times 10^{-5} \ 11;$ $\alpha(M) = 8.20 \times 10^{-6} \ 22;$ $\alpha(N+) = 0.000558 \ 1$ $\alpha(N) = 1.82 \times 10^{-6} \ 5;$ $\alpha(O) = 2.97 \times 10^{-7} \ 8;$ $\alpha(P) = 2.33 \times 10^{-8} \ 7;$ $\alpha(P) = 0.000556 \ 1 \ 1$
3153.62	2+	2512.4 2	65	641.19 2+	M1+E2	0.7 +9-5	0.00093 4	$\alpha = 0.00093 4; \alpha(K) = 0.000317 14;$

				142	Ce(n,	n'γ) 19 9	95Va25,1992AI	11 (continued)		
γ ⁽¹⁴² Ce) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	$I_{\gamma}^{@}$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	δ	α^{\dagger}	Comments	
3153 62	2+	3153.6.2	35	0	0+	F2#		0.001053.75	$\alpha(L)=3.95\times10^{-5} \ 18;$ $\alpha(M)=8.2\times10^{-6} \ 4;$ $\alpha(N+)=0.000565 \ 17$ $\alpha(N)=1.82\times10^{-6} \ 8; \ \alpha(O)=2.97\times10^{-7}$ $14; \ \alpha(P)=2.33\times10^{-8} \ 12;$ $\alpha(IPF)=0.000563 \ 17$ $\alpha=0.001053 \ 15; \ \alpha(K)=0.000199 \ 3;$	
5155.02		5155.0 2	55	U	U	12		0.001055 15	$\begin{aligned} &\alpha(L) = 2.45 \times 10^{-5} 4; \\ &\alpha(M) = 5.08 \times 10^{-6} 8; \\ &\alpha(N+) = 0.000824 \ I2 \\ &\alpha(N) = 1.127 \times 10^{-6} \ I6; \\ &\alpha(O) = 1.84 \times 10^{-7} \ 3; \\ &\alpha(P) = 1.444 \times 10^{-8} \ 21; \\ &\alpha(IPF) = 0.000823 \ I2 \end{aligned}$	
3155.29		1619.1 2	50	1536.27	2+					
2100.25	1	1935.9 2	50	1219.30	4^+					
3180.35	1	2539.4 3	100	641.19	2					
2200 06	2	3180.2 2	100	1210.20	4+					
5208.80	5	2567.0 2	84	641.19	4 2 ⁺	M1+E2	-0.32 +4-8	0.000959 14	$ \begin{array}{l} \alpha = 0.000959 \ 14; \ \alpha(\mathrm{K}) = 0.000311 \ 5; \\ \alpha(\mathrm{L}) = 3.87 \times 10^{-5} \ 6; \\ \alpha(\mathrm{M}) = 8.03 \times 10^{-6} \ 12; \\ \alpha(\mathrm{N}+) = 0.000602 \ 9 \\ \alpha(\mathrm{N}) = 1.78 \times 10^{-6} \ 3; \ \alpha(\mathrm{O}) = 2.91 \times 10^{-7} \\ 5; \ \alpha(\mathrm{P}) = 2.30 \times 10^{-8} \ 4; \\ \alpha(\mathrm{IPF}) = 0.000599 \ 9 \end{array} $	
3218.11		2576.9 2	100	641.19	2^{+}					
3228.58	(3-)	1575.72 8		1652.85	3-					
3300.68		1764.4 2	100	1536.27	2+					
† Addie	ional in	formation 1								

[†] Additional information 1. [‡] From $\gamma(\theta)$, supported by γ (linear pol) results (1992A111). [#] From $\gamma(\theta)$ (1992A111). [@] %branching from each level as given by 1995Va25. [&] Placement of transition in the level scheme is uncertain.

¹⁴²Ce(n,n'γ) 1995Va25,1992Al11

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁴²₅₈Ce₈₄

¹⁴²₅₈Ce₈₄

¹⁴²Ce(n,n' γ) 1995Va25,1992Al11

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

¹⁴²₅₈Ce₈₄

¹⁴²₅₈Ce₈₄