116 Cd(31 P,p5n γ) 2016Ra33

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 187,1 (2023)	12-Oct-2022

2016Ra33 compiled for XUNDL by B. Singh (McMaster).

2016Ra33: $E(^{31}P)=148$ MeV. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO), $\gamma\gamma(\theta)$ (ADO), $\gamma\gamma(\theta)$ (and polarization), level lifetimes by DSAM using the INGA array of 19 Compton-suppressed clover HPGe detectors arranged at six different angles at TIFR Pelletron Linac facility. Deduced high-spin levels, J^{π} , B(M1), magnetic-dipole rotational band. Contour plots of TRS calculations for the two bands. Comparison with principal axis cranking (SPAC) model calculation involving shears mechanism.

¹⁴¹Sm Levels

E(level) ^{†‡}	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #	Comments
0.0 [@]	1/2+@		
1.58 [@] 4	3/2+ @		
175.8 [@] 3	11/2-@	22.6 min 2	$\%\epsilon + \%\beta^+ = 99.69 3; \% IT = 0.31 3$
_	_		$T_{1/2}$ and decay mode from Adopted Levels.
810.6 [@] 5	15/2-@		
1899.4 [@] 6	$(19/2^{-})^{@}$		
2418.6 [@] 6	$(23/2^{-})^{@}$		
2641.1 [@] 6	$(23/2^+)^{@}$		
2722.4 [@] 6	$(21/2^+)^{@}$		
2822.7 [@] 6	$(23/2^+)^{@}$		
3317.8 [@] 6	$(23/2^{-})^{@}$		
3376.4 <mark>&</mark> 6	$25/2^{-}$		
3509.0 ^{&} 7	$27/2^{-}$	1.64 ps +31-27	
3818.4 <mark>&</mark> 7	29/2-	0.73 ps +15-13	
4264.8 <mark>&</mark> 7	31/2-	0.50 ps +10-9	
4792.6 <mark>&</mark> 7	33/2-	0.77 ps +16-10	
5322.7 7	35/2-		
5340.6 ^{<i>a</i>} 7	35/2-	0.28 ps 6	
5365.6 [°] 7	$(35/2^{-})$	1.00	
5594.3 ⁴ 7	37/2	1.30 ps +28-24	
5940.9^{a} 7	$39/2^{-}$	<0.80 ps	$T_{1/2}$: from effective half-life from 345.5 χ assuming 100% side feeding
6413.0 ^{<i>a</i>} 8	$41/2^{(-)}$	10100 Pb	
6894.4 ^a 8	$43/2^{(-)}$		
7384.4 ^a 9	$45/2^{(-)}$		

 † From least-squares fit to Ey data, assuming 0.3 keV uncertainty when not stated.

- [‡] From 2016Ra33 for levels above 3320 keV.
 [#] From 2016Ra33 by DSAM, except where noted.

[@] From Adopted Levels, not detected by 2016Ra33.

& Band(A): Magnetic-dipole band 1. Magnetic-dipole rotational (shears) band based on 25/2⁻ with proposed configuration= $\pi h_{11/2}^2 \otimes \nu h_{11/2}^{-1}$ based on agreement of B(M1) values deduced from level lifetimes with the corresponding theoretical values.

^{*a*} Band(B): Magnetic-dipole band 2. Possible magnetic-dipole rotational (shears) band based on $35/2^-$ with tentative configuration= $\pi h_{11/2}^2 \otimes v h_{11/2}^{-3}$ (theoretical calculation cannot reproduce experimental B(M1) and spin values simultaneously).

					11	¹⁶ Cd(³¹ P,p	5nγ) 20 1	l6Ra33 (cont	inued)
							$\gamma(^{141}S)$	<u>m)</u>	
B(M1) values are in $\mu_{\rm N}^2$ units.									
${\rm E_{\gamma}}^{\dagger}$	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	$\delta^{@}$	α ^{&}	Comments
$(1.58^{\ddagger} 4)$ (58.7^{\ddagger})		1.58 3376.4	3/2 ⁺ 25/2 ⁻	0.0 3317.8	$1/2^+$ (23/2 ⁻)				E_{γ} : γ ray not observed in 2016Ra33 due to energy threshold
100.2		2822.7	(22/2+)	2722.4	$(21/2^{+})$				restriction in Clover detectors.
100.2* 132.6 <i>1</i>	100.0	2822.7 3509.0	(23/2*) 27/2-	3376.4	(21/2*) 25/2-	M1+E2	0.97 28	0.805 20	$\alpha(\exp)=0.93$ 18 DCO=1.31 11 $A_2=-0.19$ 3; $A_4=-0.04$ 1 B(M1) $\downarrow=2.92$ +55-48 δ : from DCO data. Others: 1.17 +41-29 from $\gamma(\theta)$ data. $\alpha(\exp)$: from transition intensity balance. R(ADO)=1.11 7. Recalculated for this evaluation: B(M1)=2.94 98.
174.2 [‡] 3		175.8	$11/2^{-}$	1.58	3/2+	M4			Mult.: from Adopted Gammas.
181.6 [‡]		2822.7	$(23/2^+)$	2641.1	$(23/2^+)$				
222.5* 253.7 1	20.1 28	2641.1 5594.3	$(23/2^{+})$ $37/2^{-}$	2418.6 5340.6	(23/2)) 35/2 ⁻	M1+E2	0.13 8	0.1260 20	DCO=0.72 9 B(M1) \downarrow =1.45 +31-27 R(ADO)=0.84 7, POL=-0.23 15. Recalculated for this evaluation: B(M1)=1.62.33
299.3 3	11.5 18	5940.0	39/2-	5640.9	37/2-	M1		0.0814	$R(ADO)=0.66 \ 8, \ POL=-0.13 \ 10.$
300.7 3 309.4 1	8.5 <i>12</i> 94.1 <i>51</i>	5640.9 3818.4	37/2 ⁻ 29/2 ⁻	5340.6 3509.0	35/2 ⁻ 27/2 ⁻	M1 M1+E2	0.11 7	0.0804 0.0742 <i>12</i>	R(ADO)= $0.75\ 9$, POL= $-0.15\ 11$. DCO= $0.68\ 7$ B(M1) \downarrow = $1.54\ +31-26$ R(ADO)= $0.63\ 5$, POL= $-0.13\ 9$. Recalculated for this evaluation: B(M1)= $1.68\ 33$
318.0 <i>3</i> 345.5 <i>3</i>	11.4 <i>19</i> 18.4 2 <i>1</i>	5640.9 5940.0	37/2 ⁻ 39/2 ⁻	5322.7 5594.3	35/2 ⁻ 37/2 ⁻	M1 M1+E2	0.16 7	0.0693 0.0553 <i>10</i>	R(ADO)=0.78 9, POL= -0.21 15. DCO=0.75 8 B(M1) \downarrow >0.97 R(ADO)=0.81 6, POL= -0.12 10.
446.4 1	63.3 41	4264.8	31/2-	3818.4	29/2-	M1+E2	0.18 8	0.0284 6	Recalculated for this evaluation: $B(M1)>0.66$. $DCO=0.77 \ 10$ $B(M1)\downarrow=0.75 + 16 - 14$ $R(ADO)=0.70 \ 5, \ POL=-0.22 \ 11.$ Recalculated for this evaluation: $B(M1)=0.84 \ 16.$
473.0 3	18.3 35	6413.0	$41/2^{(-)}$	5940.0	$39/2^{-}$	(M1)		0.0248	R(ADO)=0.89 10.
481.4 5 490.0 <i>3</i>	10.0 27 11.2 21	0894.4 7384.4	$45/2^{(-)}$	6894.4	$43/2^{(-)}$	(M1) (M1)		0.0237	R(ADO)=0.92 9. R(ADO)=0.79 12.

ы

 $^{141}_{62} Sm_{79}\text{-}2$

I

						¹¹⁶ Cd(³	¹ Ρ,p5n γ)	2016Ra3	3 (continued)	
	$\gamma(^{141}\text{Sm})$ (continued)									
E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	$\delta^{@}$	α ^{&}	Comments	
519.2 [‡] 527.8 <i>1</i>	49.7 <i>54</i>	2418.6 4792.6	(23/2 ⁻) 33/2 ⁻	1899.4 4264.8	(19/2 ⁻) 31/2 ⁻	M1+E2	0.22 9	0.0184 4	DCO=0.81 <i>10</i> B(M1) \downarrow =0.29 +6-4 R(ADO)=0.69 6 POI = 0.23 <i>16</i>	
530.0 <i>3</i> 548.0 <i>1</i>	12.6 <i>19</i> 28.4 <i>40</i>	5322.7 5340.6	35/2 ⁻ 35/2 ⁻	4792.6 4792.6	33/2 ⁻ 33/2 ⁻	M1 M1+E2	0.20 7	0.0186 0.0168 <i>4</i>	Recalculated for this evaluation: $B(M1)=0.33$ 6. R(ADO)=0.52 4, $POL=-0.18$ 14. DCO=0.79 8 R(ADO)=0.84 9, $POL=-0.19$ 12.	
553.6 [‡] 573.0 <i>3</i>	6.8 18	3376.4 5365.6	$25/2^{-}$ $(35/2^{-})$ $(22/2^{-})$	2822.7 4792.6	$(23/2^+)$ $33/2^-$ $(21/2^+)$					
595.5+ 634.8 [‡] 823.1 [‡]		3317.8 810.6 2722.4	(23/2) $15/2^{-}$ $(21/2^{+})$	2722.4 175.8 1899.4	$(21/2^{-})$ $11/2^{-}$ $(19/2^{-})$					
1088.8 [‡] 1418.3 [‡]		1899.4 3317.8	$(19/2^{-})$ $(23/2^{-})$	810.6 1899.4	$(15/2^{-})$ $(19/2^{-})$					

ω

[†] Energy uncertainty is stated by 2016Ra33 as 0.1-0.3 keV, assigned as 0.1 keV for $I\gamma \ge 20$ and 0.3 keV for $I\gamma < 20$.

[‡] From Adopted Levels, Gammas dataset of which many γ -rays were observed by 2016Ra33 (see spectra presented in Figs. 2 and 7 therein) but not included in the level scheme (Fig. 3).

[#] From $\gamma\gamma(\theta)$ (DCO), $\gamma\gamma(\theta)$ (ADO), $\gamma\gamma(\theta)$ (ADO), $\gamma\gamma(\theta)$ (and polarization). Typical R(DCO) values for a stretched pure dipole (quadrupole) transition gated by a pure quadrupole (dipole) transition: 0.5 (2.0). Typical R(ADO) values for stretched dipole (quadrupole) transitions: 0.6 (1.6). Typical POL values: positive, negative, and near-zero numbers expected for transitions of electric, magnetic, and mixed character, respectively.

[@] From DCO data using the alignment parameter σ /J=0.27, determined from pure Δ J=1 E1 transitions in ¹⁴³Eu and ¹⁴¹Sm.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁴¹₆₂Sm₇₉-3

 $^{141}_{\ 62} Sm_{79}$

¹¹⁶Cd(³¹P,p5nγ) 2016Ra33

 $^{141}_{62}\mathrm{Sm}_{79}$