¹⁴¹Nd ε decay (2.49 h) 1973Bu21

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 187,1 (2023)	12-Oct-2022

Parent: ¹⁴¹Nd: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=2.49$ h 3; $Q(\varepsilon)=1823.0\ 28$; $\%\varepsilon+\%\beta^+$ decay=100 ¹⁴¹Nd- $Q(\varepsilon)$: From 2021Wa16.

Measured: γ , $\gamma\gamma$, ce, β^+ (1973Bu21,1974HeYW,1969He10,1968Da14,1968Be28,1963Al11). Except where noted otherwise, the presented data are from 1973Bu21.

¹⁴¹Pr Levels

E(level) [†] 0.0 145.31 <i>16</i> 1126.96 <i>17</i> 1292.63 <i>17</i>	$\frac{J^{\pi \ddagger}}{5/2^{+}}$ $\frac{5/2^{+}}{3/2^{+}}$ $(5/2)^{+}$	$T_{1/2}$ stable 1.85 ns 3 >188 fs 0.33 ps +10-7	E(level) [†] 1452? 1456.1 5 1580.18 22 1608.36 <i>19</i>	$\frac{J^{\pi \ddagger}}{\begin{array}{c} (7/2)^+ \\ 9/2^+ \\ 5/2^- \\ (3/2)^+ \end{array}}$	$\frac{T_{1/2}^{\ddagger}}{0.31 \text{ ps } +11-7} \\ 0.26 \text{ ps } +7-5 \\ 0.22 \text{ ps } +6-4 \\ 11.8 \text{ fs } 7$
1292.63 <i>17</i> 1298.61 <i>21</i> 1434.8 <i>3</i>	$(5/2)^+$ $1/2^+$ $3/2^+$	0.33 ps +10-7 0.34 ps +22-10 0.23 ps +8-5	1608.36 <i>19</i> 1657.1 <i>4</i>	$(3/2)^+$ $1/2^+$	11.8 fs 7 >0.67 ps

[†] From least-squares fit to $E\gamma's$.

[‡] Adopted values.

ε, β^+ radiations

I(K x ray)=11120 430, I(γ^{\pm})=628 24.

 $\varepsilon(K)/\beta^+=31.5 \ 32 \ \text{was} \ \text{derived} \ \text{from} \ I(K \ x \ ray)/I(\gamma^{\pm}) \ (1973Bu21); \ \text{Others:} \ 30.4 \ 23 \ (1972Ev01), \ 28 \ 1 \ (1970Bi02), \ 22 \ 8 \ (1968Be28), \ 32 \ 3 \ (1966Gr05).$

 $E(\beta^+)$ to g.s.=802 3 (1976GaZI). Others: 794 8 (1973Bu21), 790 20 (1963Bi19).

E(decay)	E(level)	$I\beta^+$	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(165.9 28)	1657.1		0.00095 25	7.98 12	0.00095 25	εK=0.7730 19; εL=0.1744 14; εM+=0.0526 5
(214.6 28)	1608.36		0.0184 25	6.97 6	0.0184 25	εK=0.7954 10; εL=0.1578 7; εM+=0.04684 24
(242.8 28)	1580.18		0.007 3	7.52 19	0.007 3	εK=0.8033 7; εL=0.1519 6; εM+=0.04482 18
(366.9 29)	1456.1		0.00120 25	8.69 9	0.00120 25	εK=0.8217 3; εL=0.13817 20; εM+=0.04016 7
(388.2 28)	1434.8		0.0154 17	7.64 5	0.0154 17	εK=0.8235 3; εL=0.13681 17; εM+=0.03970 6
(524.4 28)	1298.61		0.127 15	7.00 6	0.127 15	εK=0.8313 2; εL=0.13100 9; εM+=0.03774 3
(530.4 28)	1292.63		0.77 6	6.23 4	0.77 6	εK=0.8315 2; εL=0.13082 9; εM+=0.03768 3
(696.0 28)	1126.96		0.82 3	6.456 18	0.82 <i>3</i>	εK=0.8364; εL=0.12716 5; εM+=0.03645 2
1824 <i>3</i>	0.0	2.59 4	95.64 10	5.255 6	98.23 9	av Eβ=367.0 13; εK=0.8232 3; εL=0.11720 5;
						$\varepsilon M += 0.03328 2$
						E(decay): from 1976GaZI.

[†] Absolute intensity per 100 decays.

$\gamma(^{141}\text{Pr})$

Eγ	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [†]	$\delta^{\#}$	α^{\ddagger}	Comments
145.45 30	30.0 30	145.31	7/2+	0.0	5/2+	M1+E2	+0.069 7	0.449	%Iγ=0.240 26 α (K)=0.382 6; α (L)=0.0529 8; α (M)=0.01115 17 α (N)=0.00249 4; α (O)=0.000401 7; α (P)=2.93×10 ⁻⁵ 5 δ: from ¹⁴¹ Ce β^- decay. Mult.: α (K)exp=0.376 (¹⁴¹ Ce β^- decay) used for
981.70 22	2.73 29	1126.96	3/2+	145.31	7/2+	(E2)		0.00221	normalization of α (K)exp. %I γ =0.0218 25 α (K)=0.00189 3; α (L)=0.000257 4; α (M)=5.41×10 ⁻⁵ 8 α (N)=1.206×10 ⁻⁵ 17; α (O)=1.93×10 ⁻⁶ 3; α (P)=1.355×10 ⁻⁷ 10
1126.91 20	100	1126.96	3/2+	0.0	5/2+	M1+E2	+0.47 6	0.00225 5	$\alpha(F) = 1.555 \times 10^{-1} I^{9}$ %I $\gamma = 0.796 \ 30$ $\alpha(K) = 0.00193 \ 4; \ \alpha(L) = 0.000250 \ 5; \ \alpha(M) = 5.23 \times 10^{-5} \ 10$ $\alpha(N) = 1.171 \times 10^{-5} \ 22; \ \alpha(O) = 1.89 \times 10^{-6} \ 4;$ $\alpha(P) = 1.43 \times 10^{-7} \ 3; \ \alpha(IPF) = 9.30 \times 10^{-7} \ 15$ Mult : $\alpha(K) = 0.00167 \ 33$
1147.30 20	38.4 15	1292.63	(5/2)+	145.31	7/2+	E2		1.60×10 ⁻³	Mult. $\alpha(\mathbf{K})$ exp=0.00107 55. %Iγ=0.307 17 $\alpha(\mathbf{K})$ =0.001365 20; $\alpha(\mathbf{L})$ =0.000182 3; $\alpha(\mathbf{M})$ =3.82×10 ⁻⁵ 6 $\alpha(\mathbf{N})$ =8.52×10 ⁻⁶ 12; $\alpha(\mathbf{O})$ =1.365×10 ⁻⁶ 20; $\alpha(\mathbf{P})$ =9.82×10 ⁻⁸ 14; $\alpha(\mathbf{IPF})$ =1.73×10 ⁻⁶ 3 Mult : $\alpha(\mathbf{K})$ exp=0.00114 24
1289.58 <i>30</i>	1.23 <i>1</i> 9	1434.8	3/2+	145.31	7/2+	(E2)		1.28×10 ⁻³	$\% I\gamma = 0.0098 \ I6$ $\alpha(K) = 0.001079 \ I6; \ \alpha(L) = 0.0001418 \ 20; \ \alpha(M) = 2.97 \times 10^{-5}$ 5 $\alpha(N) = 6.64 \times 10^{-6} \ I0; \ \alpha(O) = 1.066 \times 10^{-6} \ I5;$ $\alpha(P) = 7.77 \times 10^{-8} \ II; \ \alpha(PF) = 1.92 \times 10^{-5} \ 3$
1292.64 20	57.5 52	1292.63	(5/2)+	0.0	5/2+	E2+M1		0.00151 25	%Iy=0.46 5 $\alpha(K)=0.00128 \ 21; \ \alpha(L)=0.00017 \ 3; \ \alpha(M)=3.5\times10^{-5} \ 6$ $\alpha(N)=7.8\times10^{-6} \ 12; \ \alpha(O)=1.26\times10^{-6} \ 20; \ \alpha(P)=9.4\times10^{-8}$ $17; \ \alpha(IPF)=1.99\times10^{-5} \ 4$ Mult.: $\alpha(K)\exp=0.00086 \ 19.$
1298.60 <i>21</i>	15.9 <i>17</i>	1298.61	1/2+	0.0	5/2+	E2		1.26×10 ⁻³	% Iy=0.127 14 $\alpha(K)=0.001064 \ 15; \ \alpha(L)=0.0001397 \ 20; \ \alpha(M)=2.93\times10^{-5}$ 5 $\alpha(N)=6.54\times10^{-6} \ 10; \ \alpha(O)=1.050\times10^{-6} \ 15;$

I γ normalization: I(1127 γ)=0.796% 30 from I(K x ray), I(γ^{\pm}) and ε/β^+ (g.s.)=38.3 (theory). α (K)exp were normalized to α (K)exp(145 γ)=0.376 (¹⁴¹Ce β^- decay).

 \mathbf{b}

 $^{141}_{59} Pr_{82}\text{-}2$

						¹⁴¹ Nd ε deca	y (2.49 h)	973Bu21 (continued)
							$\gamma(^{141}\mathrm{Pr})$ (con	atinued)
Eγ	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	Comments
1306 ^{&} 1	≤0.04	1452?	(7/2)+	145.31	7/2+	M1+E2	0.00148 24	$\alpha(P)=7.66\times10^{-8} \ 11; \ \alpha(IPF)=2.08\times10^{-5} \ 3$ Mult.: $\alpha(K)\exp=0.00081 \ 24.$ %I $\gamma=0.000320 \ 12$ $\alpha(K)=0.00126 \ 21; \ \alpha(L)=0.000163 \ 25; \ \alpha(M)=3.4\times10^{-5} \ 6$ $\alpha(N)=7.6\times10^{-6} \ 12; \ \alpha(O)=1.23\times10^{-6} \ 19; \ \alpha(P)=9.2\times10^{-8} \ 17;$
1310.6 10	≈0.05	1456.1	9/2+	145.31	7/2+	M1+E2	0.00147 24	α (IPF)=2.24×10 ⁻⁵ 5 %I γ ≈0.000400 α (K)=0.00125 21; α (L)=0.000161 25; α (M)=3.4×10 ⁻⁵ 5
1434.6 5	≈0.7	1434.8	3/2+	0.0	5/2+	(E2+M1)	0.00125 18	$\alpha(N)=7.6\times10^{-6} \ 12; \ \alpha(O)=1.22\times10^{-6} \ 19; \ \alpha(P)=9.1\times10^{-8} \ 16; \\ \alpha(IPF)=2.34\times10^{-5} \ 5 \\ \%_{I\gamma}\approx0.00560 \\ \alpha(K)=0.00103 \ 16; \ \alpha(L)=0.000132 \ 19; \ \alpha(M)=2.8\times10^{-5} \ 4 $
1435.1 22	0.1 3	1580.18	5/2-	145.31	7/2+	E1	6.31×10 ⁻⁴	$\alpha(N)=6.2\times10^{-6} \; 9; \; \alpha(O)=1.00\times10^{-6} \; 15; \; \alpha(P)=7.5\times10^{-8} \; 13; \\ \alpha(IPF)=5.64\times10^{-5} \; 12 \\ \%I\gamma=0.0008 \; 24 $
1456 10 54	0.10.2	1456 1	0/2+	0.0	5 /Q+		1.05.10-3	$\alpha(K)=0.000402\ 6;\ \alpha(L)=4.99\times10^{-5}\ 8;\ \alpha(M)=1.039\times10^{-5}\ 15$ $\alpha(N)=2.32\times10^{-6}\ 4;\ \alpha(O)=3.75\times10^{-7}\ 6;\ \alpha(P)=2.84\times10^{-8}\ 4;$ $\alpha(IPF)=0.000166\ 3$
1456.12 54	0.10 3	1456.1	9/21	0.0	5/21	(E2)	1.05×10 ⁻⁵	$^{\%}$ 1 γ =0.00080 24 α (K)=0.000851 12; α (L)=0.0001105 16; α (M)=2.31×10 ⁻⁵ 4 α (N)=5.17×10 ⁻⁶ 8; α (O)=8.31×10 ⁻⁷ 12; α (P)=6.13×10 ⁻⁸ 9; (IDE) 6.22×10 ⁻⁵ 0
1580.17 22	0.76 11	1580.18	5/2-	0.0	5/2+	(E1)	6.69×10 ⁻⁴	$\alpha(\text{IPF})=0.23 \times 10^{-6} \text{ g}$ %I $\gamma=0.0061 \text{ g}$ $\alpha(\text{K})=0.000342 \text{ 5}; \alpha(\text{L})=4.23 \times 10^{-5} \text{ 6}; \alpha(\text{M})=8.81 \times 10^{-6} \text{ 13}$ $\alpha(\text{N})=1.97 \times 10^{-6} \text{ 3}; \alpha(\text{O})=3.18 \times 10^{-7} \text{ 5}; \alpha(\text{P})=2.41 \times 10^{-8} \text{ 4};$
1608.35 <i>19</i>	2.3 3	1608.36	(3/2)+	0.0	5/2+	(E2+M1)	0.00106 13	$\alpha(\text{IPF})=0.000274 \ 4$ %Iy=0.0184 25 $\alpha(\text{K})=0.00081 \ 11; \ \alpha(\text{L})=0.000104 \ 13; \ \alpha(\text{M})=2.2\times10^{-5} \ 3$ $\alpha(\text{N})=4.8\times10^{-6} \ 7; \ \alpha(\text{O})=7.8\times10^{-7} \ 11; \ \alpha(\text{P})=5.9\times10^{-8} \ 9;$
1657.04 <i>40</i>	0.12 3	1657.1	1/2+	0.0	5/2+	(E2)	9.10×10 ⁻⁴	$ \begin{array}{l} \alpha(\mathrm{IPF}) = 0.000120 \ 4 \\ \% \mathrm{Iy} = 0.00096 \ 24 \\ \alpha(\mathrm{K}) = 0.000666 \ 10; \ \alpha(\mathrm{L}) = 8.55 \times 10^{-5} \ 12; \ \alpha(\mathrm{M}) = 1.79 \times 10^{-5} \ 3 \\ \alpha(\mathrm{N}) = 3.99 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 6.44 \times 10^{-7} \ 9; \ \alpha(\mathrm{P}) = 4.80 \times 10^{-8} \ 7; \\ \alpha(\mathrm{IPF}) = 0.0001367 \ 20 \end{array} $

ω

[†] Adopted values.[‡] Additional information 1.

 $^{141}_{59} \mathrm{Pr}_{82} \text{--} 3$

 $\gamma(^{141}\text{Pr})$ (continued)

Additional information 2.
@ For absolute intensity per 100 decays, multiply by 0.0080 3.
& Placement of transition in the level scheme is uncertain.

¹⁴¹Nd ε decay (2.49 h) 1973Bu21

Decay Scheme

 $^{141}_{59} \rm{Pr}_{82}$

5