		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 187,1 (2023)	12-Oct-2022

 $Q(\beta^{-})=-1823.0$ 28; S(n)=9400 6; S(p)=5229.3 12; Q(α)=-1298.6 22 2021Wa16 S(2n)=17329 4, S(2p)=13370.1 15 (2021Wa16). Additional information 1.

¹⁴¹Pr Levels

Cross Reference (XREF) Flags

 141 Pr has 59 protons and 82 neutrons which gives no valence neutrons above N=82 closed shell but 9 valence protons above Z=50 closed shell whose excitations are responsible for high-spin states J^{π} values. Possible configurations ((⁷Li,4n γ), 2015Li21): $\pi(g_{7/2}d_{5/2})^9$ up to 23/2⁺ and $\pi(g_{7/2}d_{5/2})^7h_{11/2}^2$ up to 45/2⁺ for positive-parity

states; $\pi(g_{7/2}d_{5/2})^8h_{11/2}^1$ for negative-parity states.

		A 141 Ce β^- B 141 Nd ε C 141 Nd ε D 145 Pm α E 138 Ba(⁷ L F 139 La(³ H	decay decay (2.49 h) decay (62.0 s) decay $i,4n\gamma$ ie,n)	H I J K L M	¹⁴⁰ Ce(p 140Ce(c 140Ce(³) 140Ce(⁷) 140Ce(¹) 141Pr(γ	(p,p),(pol p,p) IAR (l,n) He,d) Li, ⁶ He) $^{6}O,^{15}N)$ $,\gamma')$	O P Q R S T	¹⁴¹ Pr(n,n' γ) ¹⁴¹ Pr(d,d'),(α , α') Coulomb excitation ¹⁴² Ce(p,2n γ) ¹⁴² Nd(d, ³ He) ¹⁴⁴ Nd(p, α)
		G 139 La(α ,	$2n\gamma$)	N	141 Pr(γ	,n),(γ ,p),(e,e')	U	142 Nd(e,e'p)
E(level) [†]	Jπ‡	T _{1/2}	XI	REF				Comments
0.0	5/2+	stable	ABCDE GHIJ	KLMNO	PQRSTU	$\mu = +4.2754 5 (19) \\ Q = -0.077 6 (19) \\ \mu: by optical doo Q: by collinear field of Q: by coll$	982M 94Ii0 uble r ast-be am) a ,d), at fm 50	a31,2014StZZ) 1,2016St14) esonance method. eam laser spectroscopy; others: -0.0589 nd -0.024 (1978LeZA). comic beam (1976Fu06). 0 (2013An02, compilation); 5.19 fm 22
145.4434 <i>14</i>	7/2+	1.85 ns <i>3</i>	ABC EFG IJ	IK M O	PQRSTU	μ=+2.95 9 (2014 μ: by Mossbauer others: 2.8 2 (+12-6 (1971) T _{1/2} : ¹⁴¹ Ce β ⁻ o decay: 1.82 m ns 4 (1967Ba2 J ^π : L=4 in (³ He	4StZZ 4StZZ (1971) 3e11) 4ecay s 4 (1) $(27); fr ,d), \gamma$	b). c) ct method (re-evaluated by 2014StZZ); Ka08), +3.1 2 (1973Gr15), +2.78 (1966Bl08). Others from ¹⁴¹ Ce β^- 972Ga39), 1.91 ns 6 (1968Ra02), 1.83 rom (n,n' γ): >1.23 ps (2008Sc17). to 5/2 ⁺ is M1+E2.
1117.67 6	11/2-	4.8 ns <i>1</i>	C E G IJ	кмо	P RSTU	Radius(rms)=5.2 μ =+6.2 4 (1984) μ : from $\gamma(\theta, H, t)$ (1974Ej01). T _{1/2} : from (α ,2r (1981Ko16), 5 (α ,2n γ) (1973) ps (n,n γ) (200) J ^{π} : L=5 in (³ He Radius(rms)=5.6	(1 fm Go12, in (α γ) (1 5.1 ns Ej02) 8Sc1' ,d), γ 4 fm	20 in (e,e'p) (1993La16). 2014StZZ) ,2n γ) (1984Go12); other: +7.2 4 981Pr09). Others: 4.8 ns 3 (p,2n γ) 3 (α ,2n γ) (1975Fr18), 4.80 ns 25 , 4.6 ns 1 (α ,2n γ) (1984Go12), >0.76 7). to 5/2 ⁺ is E3, γ to 7/2 ⁺ is M2. 22 in (e,e'p) (1993La16).
1126.83 10	3/2+	>188 [@] fs	B G	MO	QR	J^{π} : γ to $5/2^+$ is	$\Delta J=1$	M1+E2, $\log ft=6.4$ via $3/2^+$ parent.

Adopted Levels, Gammas (continued)

¹⁴¹Pr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XR	EF	Comments		
1292.69 9	(5/2)+	0.33 [@] ps +10-7	B G	MOQR	J ^π : γ to 5/2 ⁺ is M1+E2, log <i>ft</i> =6.2 via 3/2 ⁺ parent, $\gamma \gamma(\theta)$ for 1147γ in Coul. ex. (1980An22).		
1298.71 <i>14</i>	1/2+	0.34 [@] ps +22-10	B G IJK	KL OP RSTU	J^{π} : γ to 5/2 ⁺ is E2, L=0 in (³ He,d); contradicts with A ₂ =-0.10 5 in (p,2n γ) for γ to 5/2 ⁺ . Radius(rms)=4.93 fm 24 in (e,e'p) (1993La16).		
1436.12 12	3/2+	0.23 ^(@) ps +8-5	B G	M OP R	J ^{π} : $\gamma(\theta)$ for γ from 5/2 ⁺ 7632 resonance in (γ, γ') , γ to 7/2 ⁺ .		
1452.36 9	(7/2)+	0.31 [@] ps +11-7	BC G	M OP R	J^{π} : $\gamma(\theta)$ for γ from 5/2 ⁺ 7632 resonance in (γ, γ') , γ to 7/2 ⁺ is M1+E2 and is much stronger than γ to 5/2 ⁺ . This eliminates the possibility of J=3/2 allowed by $\gamma(\theta)$ in (γ, γ') .		
1455.5 <i>3</i>	+		G		J^{π} : L=2 in (α, α') . Suggested $(7/2^+)$.		
1457.36 10	9/2+	0.26 [@] ps +7-5	EG	M OP R	J ^π : γ to 7/2 ⁺ is ΔJ=1, M1+E2. γ to 11/2 ⁻ . γ from $13/2^+$.		
1491.9				М			
1493.98 <i>12</i> 1510.3? <i>11</i>	11/2+	0.46 [@] ps +36-15	EFG	OPQR M	J^{π} : γ to 7/2 ⁺ is $\Delta J=2$ E2, yield in (p,2n γ).		
1520.89 10	9/2+	150 [@] fs +19-16	CEG	M OP R	J ^{π} : γ to 5/2 ⁺ is Δ J=2 E2, γ to 11/2 [−] . T _{1/2} : other: 179 fs 22 (from B(E2))=0.057 7, 2007Sc18, (γ , γ')).		
1559.0 10		@		M			
1580.05 10	5/2-	0.22 gs +6-4	ВG	M OPQR	J ^{<i>n</i>} : γ to 7/2 ⁺ is E1, ε feeding from 3/2 ⁺ ; π contradicts direct excitation observed in Coul. ex. (1980An22).		
1596.6? 12		-		М			
1608.26 18	$(3/2)^+$	11.8 ^{<i>@</i>} fs 7	B GIJK	CLM OPQRST	J ^{π} : L=2 in (³ He,d) and (M1+E2) γ to 5/2 ⁺ g.s.		
1650.85 11	(9/2+)	132 [@] fs +21-17	G	M OP R	J ^{π} : γ to 5/2 ⁺ is (E2) and γ to 7/2 ⁺ is (M1+E2). T _{1/2} : other: 159 fs <i>13</i> (from B(E2)↑=0.040 <i>4</i> , 2007Sc18, (γ , γ')).		
1657.07 <i>16</i> 1666?	1/2+	>0.67 ^(@) ps	B IJ	MORT M	J^{π} : L=0 in (³ He,d),(d,n).		
1767.36 13	13/2+	>0.37 [@] ps	EG	OP R	J^{π} : γ to 11/2 ⁻ is ΔJ=1 E1, γ to 11/2 ⁺ is ΔJ=1 M1+E2; no γ to <11/2. 1994De56 suggest 11/2 ⁺ .		
1786.47 <i>14</i> 1796.21 <i>16</i>	(5/2 ⁺) 15/2 ⁺	0.19 [@] ps +5-4 1.0 ns <i>I</i>	E G	M O QR OP R	J ^π : γ's to 3/2 ⁺ and 7/2 ⁺ are (M1+E2). μ=+8.0 <i>17</i> (1984Go12,2014StZZ) μ: from γ(θ,H,t) in (α,2nγ) (1984Go12). J ^π : γ to 11/2 ⁺ is ΔJ=2 E2; no γ's to J<11/2. T _{1/2} : from (α,2nγ); other: >10.4 fs (n,n'γ).		
1812.37 <i>14</i> 1816	(9/2+)	0.8 [@] ps +12-3		OP R M	J^{π} : γ to 5/2 ⁺ is (E2) and γ to 7/2 ⁺ is (M1+E2).		
1842.14 <i>14</i> 1849.0 <i>10</i>	$(7/2^+)$	0.70 [@] ps +59-22	G	M OP R M	J^{π} : (M1+E2) γ 's to 5/2 ⁺ , 7/2 ⁺ , and 9/2 ⁺ .		
1853.79 <i>12</i> 1910.49? <i>20</i>	(11/2 ⁺)	0.8 [@] ps +16-3	G	0 R 0	J^{π} : γ to 7/2 ⁺ is (E2) and γ to 9/2 ⁺ is (M1+E2).		
1912.9 8			G	M			
1945.5 11	$(2/2^{\pm})$	0.20 (0) 10 10		M			
1975.26 75	(3/2)	$0.39 \circ \text{ps} + 19 - 10$		MUK	AREF: M(1981). J^{π} : γ to 5/2 ⁻ is (E1) and γ to 7/2 ⁺ is (E2).		
1986.08 16	$(13/2^+)$	>0.42 gs	EG	O R	J ^{<i>n</i>} : γ to 9/2 ⁺ is (E2) and γ to 11/2 ⁻ is (E1) with mult in (p,2n γ).		
2000.27 22	$(13/2^{-})$	0.13 ^w ps +11-5		0	J^{π} : γ to $11/2^{-}$ is (M1+E2).		

¹⁴¹Pr Levels (continued)

Iπ‡ E(level) $T_{1/2}$ S XREF Comments 0.22[@] 2000.47[#] 15 ps +12-6 J^{π} : γ to $7/2^+$ is (E1), γ to $9/2^+$ is $(9/2)^{-}$ С OP R (E1), and γ to $11/2^-$; $\pi = -$ from L=3 in (α, α') . 0.7^(a) ps +10-3 J^{π} : γ to $7/2^+$ is (E2) and γ to 2003.84 23 $(11/2^+)$ OP R $9/2^+$ is (M1+E2). 2006.9 11 Μ 0.40^(a) ps +26-12 2018.12 15 $(3/2^{+})$ MO XREF: M(2016). J^{π} : γ 's to $5/2^+$ and $1/2^+$ are (M1+E2). $\begin{array}{l} J^{\pi}: \ \gamma \ {\rm to} \ 7/2^+ \ {\rm is} \ {\rm M1+E2} \ {\rm and} \ \gamma \\ {\rm from} \ 11/2^+ \ {\rm is} \ {\rm M1+E2}. \\ J^{\pi}: \ \gamma \ {\rm to} \ 15/2^+ \ {\rm is} \ \Delta J{=}1 \ {\rm M1+E2}, \end{array}$ 0.68^(a) ps +86-25 2045.11 16 $9/2^{+}$ 0 EG 2068.84 15 $17/2^{+}$ R no γ to <13/2⁺. 0.22^(a) ps +9-6 2075.50 12 $(5/2^+)$ J^{π} : γ 's to $3/2^+$ and $7/2^+$ are 0 (M1+E2). 0.17^(a) ps +7-4 2100.91 25 $(3/2^+, 5/2^+)$ 0 J^{π} : γ 's to $3/2^+$ and $5/2^+$ are (M1+E2). 2105.02[#] 18 87^(a) fs +15-11 $(5/2^{-})$ M OP R J^{π}: L=3 in (α , α') and γ 's to 5/2⁺ and $7/2^+$ are (E1). 0.15^(a) ps +49-8 2105.5.3 $(7/2^-, 15/2^-)$ J^{π} : γ to $11/2^{-}$ is (E2). 0 2106.2 7 $(5/2^{-})$ 1.0 3 М $>28^{(0)}$ fs $15/2^{(+)}$ 2108.20 23 J^{π} : γ to $13/2^+$ is $\Delta J=1$ (M1), γ EG 0 R to $15/2^+$ is $\Delta J=0$ (M1). >114[@] fs 2126.10 15 $(11/2^+)$ J^{π} : γ to $7/2^+$ is (E2) and γ to 0 R 9/2⁺ is (M1+E2). 0.27^(a) ps +11-7 J^{π} : γ 's to $5/2^+$, $7/2^+$, and $9/2^+$ are 2135.51 21 MO $(7/2^{-})$ (E1). 2154.5 4 $(1/2^+, 3/2, 5/2^+)$ 0 J^{π} : γ' s to $1/2^+$ and $(5/2)^+$ in $(n,n'\gamma).$ $101^{\textcircled{0}}$ fs +18-15 2171.86 25 $(5/2^-, 7/2^-, 9/2^-)$ O R J^{π} : γ to 7/2⁺ is (E1). 2178 10 $(5/2^{-})$ J^{π}: L=3 in (α , α'), γ' s to 7/2⁺ and Ρ $3/2^+$. $0.26^{(0)}$ ps +24-9 2188.15 20 $(3/2^+)$ 0 J^{π} : γ to $7/2^+$ is (E2) and γ to $5/2^+$ is (M1+E2). $>215^{@}$ fs 2190.36 20 $(1/2^{-})$ 0 J^{π} : γ to $5/2^+$ is (M2) and γ to $(7/2^+)$ is (E3). 171[@] fs +40-28 $(11/2^+)$ 2205.96 21 0 R J^{π} : γ to $7/2^+$ is (E2) and γ to $11/2^+$ is (M1+E2). 0.7^(a) ps +61-4 2228.84 14 $(5/2^+, 7/2^+)$ 0 J^{π} : γ 's to $5/2^+$ and $7/2^+$ are (M1+E2). 2230.3 4 J^{π} : suggested $13/2^+, 15/2^+$ in 0 $(n,n'\gamma)$ (1994De56). 2234 5 3/2М J^{π} : from $\gamma(\theta)$ for γ from $5/2^+$ resonance 7632 in (γ, γ') . 2243.15 16 G J^{π}: suggested 13/2⁺ in (n,n' γ) 0 R (1994De56). 147[@] fs +35-25 2247.7 4 $(3/2^{-}, 5/2^{-})$ MO J^{π} : γ' s to $3/2^+$ and $5/2^+$ are (E1). 2254.0 18 0P J^{π}: L=2 in (α, α'). Suggested $1/2^+, 3/2^+$ in $(n, n'\gamma)$ (1994De56). 0.18^(a) ps +10-7 2264.49 17 0 J^{π} : γ to $7/2^+$ is (E2) and γ to $(3/2^+)$

 $1/2^+$ is (M1+E2).

¹⁴¹Pr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Х	REF	Comments
2267.20 18	(1/2 ⁺)	>184 [@] fs	F	MO	XREF: F(2280)M(2272). J ^{π} : γ to 5/2 ⁺ is (E2) and γ to 3/2 ⁺ is (M1+E2).
2270.1 <i>10</i> 2296.0 <i>10</i>				M M	× /
2302.6 4	(5/2+,7/2+,9/2+)	0.25 [@] ps +15-7		0	J^{π} : γ to 7/2 ⁺ is (M1+E2) and γ to $(5/2)^+$.
2310.0 11				M	
2315.65 20	(5/2,7/2)	130 [@] fs +35–24		OP	J ^{π} : L=3 in (α , α'); suggested 3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻ in (n,n' γ) (1994De56), but 5/2 ⁺ ,7/2 ⁺ in (n,n' γ) (2008Sc17).
2336.54 [#] 21	(15/2 ⁻)	>28 [@] fs		0	J^{π} : γ to $11/2^{-}$ is (E2) and γ to $9/2^{+}$ is (E3).
2341.0 11				M	
2345.87 15	(9/2+)	0.21 [@] ps +26-8		0	J^{π} : γ to $11/2^{-}$ is (E1) and γ to $5/2^{+}$ is (E2).
2353.7 19		0		MO	J^{π} : suggested 1/2 ⁻ in (n,n' γ) (1994De56).
2362.85 20 2364.8? 8	(5/2 ⁻)	$39^{(2)}$ fs +10-8		0 0	J^{π} : γ 's to $3/2^+$ and $7/2^+$ are (E1). J^{π} : suggested as $7/2^+$ in $(n,n'\gamma)$.
2382.2 [#] 3	(9/2-,11/2-)	0.24 [@] ps +28-9	С	OP R	J^{π} : γ to 9/2 ⁺ is (E1) and γ to 11/2 ⁻ is (M1+E2).
2399.28? 22				0	J ^{π} : suggested 11/2 ⁺ ,13/2 ⁺ in (n,n' γ) (1994De56).
2403.13 24	(9/2+)	0.49 ^(a) ps +85-20		0	J^{π} : γ to 5/2 ⁺ is (E2) and γ to 7/2 ⁺ is (M1+E2).
2419.9 3	(9/2 ⁺)	$0.5^{\textcircled{0}}$ ps +17-2		0	J^{π} : γ to $5/2^+$ is (E2) and γ to $11/2^+$ is (M1+E2).
2453.1 <i>3</i>	$(3/2^{-}, 5/2^{-})$	18.7 [@] fs +35-28		MO	J^{π} : γ 's to $3/2^+$ and $5/2^+$ are (E1).
2454.20 22	(15/2 ⁺)	>94 [@] fs		0	J^{π} : γ to $11/2^+$ is (E2) and γ to $13/2^+$ is (M1+E2).
2461.79 <i>21</i>	$(5/2^+)$	136 [@] fs +57-33		0	J^{π} : γ 's to $3/2^+$ and $7/2^+$ are (M1+E2).
2473.2? 3	$(1/2^{-}, 9/2^{-})$	>14 [@] fs		0	J^{π} : γ to $5/2^{-}$ is (E2).
2480				M	
2499.08? 22				0	J^{π} : suggested 13/2 ⁺ in (n,n' γ) (1994De56).
2499.76 25	$(5/2^+, 7/2^+, 9/2^+)$	102° fs +28–19		MO	J^{π} : γ to $7/2^+$ is (M1+E2).
2520.15 21	$(3/2^+)$	$0.2^{(0)}$ ps +18-1		MO	J^{π} : γ to $7/2^+$ is (E2) and γ to $5/2^+$ is (M1+E2).
2563.9 6	$(5/2^-, 7/2^-)$	$55^{(0)}$ fs +10-8		M OP	J^{π} : γ to $7/2^+$ is (E1) and γ from $5/2^+$.
2580.71 16	$(11/2^+)$	>13 [@] fs		0	J^{π} : γ to 7/2 ⁺ is (E2) and γ to 9/2 ⁺ is (M1+E2).
2583.0 <i>6</i> 2586.1 <i>10</i>	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	24 ^(a) fs +7-6		M OP M	J^{π} : γ to $7/2^+$ is (E1).
2601.2 6	$(5/2^{-},7/2^{-})$	59 [@] fs +37-20		MO	J^{π} : γ 's to 7/2 ⁺ and 5/2 ⁺ are (E1).
2603.7 6	(5/2 ⁻ ,7/2 ⁻)	28 [@] fs +12-9		0	E(level): Possible doublet with 2601.2 level.
		0			J^{π} : γ 's to 7/2 ⁺ and 5/2 ⁺ are (E1).
2607.1 8	(1/2 ⁺)	0.12 ^{^w} ps +11-5		0	J^{π} : γ to $5/2^+$ is (E2) and excitation function in $(n,n'\gamma)$.
2609 10	+			Р	J^{π} : L=2 in (α, α') .
2611.7 5	$(9/2^+)$	29 ^w fs +5-4		0	J^{π} : γ to $5/2^+$ is (E2) and excitation

¹⁴¹Pr Levels (continued)

E(level) [†]	J ^π ‡	T _{1/2}	XREF	Comments
				function in $(n,n'\gamma)$.
2623.2 <i>4</i> 2626.7? <i>3</i>	$(5/2^+, 7/2^+)$ $(15/2^-)$	72 [@] fs +19-14	M O E G	R J^{π} : γ 's to 5/2 ⁺ and 7/2 ⁺ are (M1+E2). R J^{π} : from comparison with isotone ¹⁴³ Pm.
2646.4 6	(9/2 ⁺)	90 [@] fs +25-17	MO	J^{π} : γ to $5/2^+$ is (E2) and γ to $7/2^+$ is (M1+E2).
2659.6 8	$(11/2^+)$	>156 [@] fs	0	J^{π} : γ' s to 7/2 ⁺ are (E2).
2669.02 [#] 22	(9/2 ⁻ ,11/2 ⁻ ,13/2 ⁻)	42 ^(a) fs +23-14	0	J^{π} : γ to $11/2^+$ is (E1). 2008Sc17 in (n,n' γ) adopted (13/2 ⁻) from (E3) γ to 7/2 ⁺ but this greatly exceeds RUL limits, reason for which (13/2 ⁻) is not adopted here.
2682.99 <i>24</i> 2692.0 <i>10</i>	(5/2 ⁺) _	0.22 [@] ps +22-8	O M P	J^{π} : γ' s to $3/2^+$ and $7/2^+$ are (M1+E2). XREF: P(2984).
26997 5			м	J^{n} : L=3 in (α, α) .
2707.9 [#] 4	$(15/2^{-})$	$0.04^{\textcircled{0}}$ ps +12-3	0	J^{π} : γ to $11/2^{-1}$ is (E2).
2710.1 3	$(3/2^+)$	0.16 [@] ps +46-8	0	J^{π} : γ 's to $3/2^+$ and $1/2^+$ are (M1+E2) and excitation function in $(n,n'\gamma)$.
2718.5 [#] 4	(9/2,11/2)	>159 [@] fs	0	J^{π} : γ' s to $9/2^+$ and $11/2^-$.
2722.4 4	(3/2+)	44 [@] fs +16-11	MO	J^{π} : γ 's to 1/2 ⁺ and 5/2 ⁺ are (M1+E2).
2731.4 3	(9/2 ⁺)	55 [@] fs +23-15	OP	J^{π} : γ to $5/2^+$ is (E2) and γ to $11/2^+$ is (M1+E2).
2739.7 <i>4</i> 2749.58 <i>17</i>	(1/2 ⁻ ,9/2 ⁻)	>87 [@] fs	0	J^{π} : γ to $5/2^{-}$ is (E2).
2777.5 4	(9/2)	44 [@] fs +12-9	0	J^{π} : γ to $7/2^+$ is D+Q and γ to $11/2^+$.
2782.4 6	$(5/2^+, 7/2^+)$	$0.15^{\textcircled{0}}$ ps +10-5	0	J^{π} : γ 's to $5/2^+$ and $7/2^+$ are (M1+E2).
2782.7 3	(13/2 ⁺)	>51 [@] fs	0	J^{π} : γ to $9/2^+$ is (E2) and γ to $11/2^+$ is (M1+E2).
2786.2 10			M	
2801.77 22	$(9/2^+)$	0.12 ^w ps +16-5	0	J^{π} : γ to 5/2 ⁺ is (E2) and γ to 7/2 ⁺ is (M1+E2).
2807.18 18	$(3/2^+, 5/2, 7/2^+)$	$51^{\textcircled{0}}$ fs +25-15	MO	J^{π} : γ' s to $5/2^+$ and $7/2^+$.
2810.70 22	$(1/2^+)$	>76 [@] fs	0	J^{π} : γ to 5/2 ⁺ is (E2) and γ to 3/2 ⁺ is (M1+E2).
2814.0 <i>3</i>	(1/2 ⁻)	24 ^(a) fs +26–14	0	J^{π} : γ to 5/2 ⁻ is (E2) and γ to 3/2 ⁺ is (E1).
2820 10		0	Р	
2837.5 7	$(5/2^{-},7/2^{-})$	24° fs +13-9	MO	J^{π} : γ 's to $5/2^+$ and $7/2^+$ are (E1).
2839.7 4	(9/2 ⁻)	56 ^w fs +48-23	0	J ^{π} : (5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻) from (E1) γ to 7/2 ⁺ ; (3/2,9/2,11/2) from excitation function in (n,n' γ).
2844.7 4	(3/2 ⁻)	45 [@] fs +90-28	M OP	J^{π} : γ to $5/2^+$ is (E1) and γ to $1/2^+$ is (E1).
204753	$(0/2^{+})$. 07 [@] f	2	$T_{1/2}$: other: 0.01 eV (γ, γ') .
2847.3 3	(9/2 ')	>9/~ IS	0	J^{*} : γ to $5/2^{+}$ is (E2) and γ to $11/2^{+}$ is (M1+E2).
2863.4 6 2876 10		0.06 ^w ps +150-4	0 P	
2881.6 4	$(7/2^+)$	$>55^{\circ}$ fs	0	J^{π} : γ 's to 5/2 ⁺ and 9/2 ⁺ are (M1+E2).
2887.47 [#] 25	$(7/2^+, 9/2, 11/2^+)$	>24 [@] fs	0	J^{π} : γ' s to $7/2^+$ and $11/2^+$.

¹⁴¹Pr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XI	REF	Comments		
2896.8 7	(11/2 ⁺)			0	J^{π} : $(5/2^+, 7/2, 9/2, 11/2^+)$ from γ 's to $7/2^+$ and $9/2^+$ and $(11/2, 13/2)$ from excitation function in $(n, n'\gamma)$		
2927.25 20	19/2-		EG	PR	J^{π} : γ to $17/2^+$ is $\Delta J=1$ E1, no γ to levels with $J<17/2$.		
2929.2 <i>5</i> 2941.4 <i>6</i>	$(5/2^+, 7/2^+)$	0.08 [@] ps +14-4		O OP	J^{π} : γ 's to $5/2^+$ and $7/2^+$ are (M1+E2).		
2950.5 6	$(1/2^+)$			MO	J^{π} : (1/2 ⁺ ,3/2,5/2,7/2 ⁺) from γ 's to 3/2 ⁺ and 5/2 ⁺ and (1/2) from excitation function in (n,n' γ).		
2954.0 <i>10</i> 2962.65 <i>24</i>	19/2+		EG	Μ	J^{π} : γ to $17/2^+$ is $\Delta J=1$ M1+E2, no γ to levels		
2983.5 4	(5/2 ⁻ ,7/2 ⁻)			MO	with J<15/2. J^{π} : $(3/2^+, 5/2, 7/2, 9/2^+)$ from γ 's to $5/2^+$ and $7/2^+$; $(5/2^-, 7/2^-)$ more probable in $(n, n'\gamma)$ (2008Sc17) based on excitation function and decay behavior.		
2986 <i>10</i> 3000.75 <i>23</i>	+ (11/2 ⁺)			P O	J ^{π} : L=2 in (α , α'). J ^{π} : (5/2 ⁺ ,7/2,9/2,11/2 ⁺) from γ 's to 7/2 ⁺ and 9/2 ⁺ ; (11/2 ⁺) more probable in (n,n' γ) (2008Sc17) based on excitation function and decay behavior.		
3016.3 5	(5/2 ⁻)			MO	J^{π} : $(3/2^+, 5/2, 7/2^+)$ from γ 's to $3/2^+$ and $7/2^+$; $(5/2^-)$ more probable in $(n, n'\gamma)$ (2008Sc17) based on excitation function and decay behavior		
3016.88 25	21/2+		EG		J^{π} : γ to $17/2^+$ is $\Delta J=2$ E2, no γ to levels with $J<17/2$.		
3018.95 22	21/2-	0.2 ns 1	EG		$T_{1/2}$: from $(\alpha, 2n\gamma)$ (1981Pr09). J^{π} : γ to 19/2 ⁻ is ΔJ =1 M1+E2 and based on syst that favours 21/2 ⁻ adopted in (⁷ Li,4n γ) and not 17/2 ⁻ adopted in ($\alpha, 2n\gamma$).		
3034.3 6	$(1/2^+)$			0	J ^{π} : (1/2 ⁺ , 3/2, 5/2 ⁺) from γ 's to 1/2 ⁺ and 5/2 ⁺ ; (1/2 ⁺) more probable in (n,n' γ) (2008Sc17) based on excitation function and decay behavior		
3045.5 6	(11/2 ⁺ ,9/2)			0	J^{π} : $(5/2^+, 7/2, 9/2, 11/2^+)$ from γ 's to $7/2^+$ and $9/2^+$; $(11/2^+, 9/2)$ more probable in $(n, n'\gamma)$ (2008Sc17) based on excitation function and decay behavior		
3057.0 10				М	decay benavior.		
3064.5 5 3075.5 9	(7/2 ⁺ ,9/2 ⁻) (3/2 ⁺)			O M O	J^{π} : γ 's to $5/2^{-}$ and $11/2^{+}$. J^{π} : $(3/2^{+}, 5/2, 7/2, 9/2^{+})$ from γ 's to $5/2^{+}$ and $7/2^{+}$; $(3/2^{+})$ more probable in $(n, n'\gamma)$ (2008Sc17) based on excitation function and decay behavior.		
3080.0 5				0			
3083.5 9	(5/2)	0.02 eV		MO	$J^{\pi}, T_{1/2}$: from (γ, γ') .		
3114.8 <i>12</i> 3128.6 5				U M OP			
3155.5 6				MO			
3203.3 7	-		F	M P	J^{π} : L(³ He,n)=3.		
3206.0 10				М			
3255.0 10				M			
3294 0 10				M			
3324.3 7				M			
3338.0 10				М			
3346.0 10	(7/2)	0.05 eV		M	I^{π} T _{eve} : from $(\alpha \alpha')$		
3370.0 10	(1/2)	0.05 EV		n r M	J ,1 _{1/2} . ΠΟΠΙ (γ,γ).		

¹⁴¹Pr Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XF	REF	Comments
3376.0 10				М	
3396.7 <i>3</i>	$21/2^{-}$		EG		J^{π} : γ to 19/2 ⁺ is $\Delta J=1$ E1, no γ to levels with J<19/2.
3417.3 7				М	
3427.3 7				M P	
3449.0 10	a a /a -			M	
3470.9 3	$23/2^{-}$		ΕG		J^{π} : γ to 21/2 ⁺ is $\Delta J=1$ E1, no γ to levels with $J < 21/2^+$.
3494.8 7				M	
3508.0 10	22/2-			M	
3520.0 3	23/2		EG	м	J'' : γ to 21/2 is M1+E2 and γ from 27/2 is Q.
2585 5 4	22/2+	0.2 mg 1	E C	п	$T_{\rm res}$ from (a 2ma) (1091 $D_{\rm r}$ 00)
5585.5 4	25/2	0.2 118 1	ĽG		J^{π} : γ to 21/2 ⁺ is $\Delta J=1$ M1, no γ to levels with J<21/2;
2500.20				п	maximum alignment of $\pi(g_{7/2}a_{5/2})^{-1}$ configuration.
3590 20				Р м	
3643.1 10			C	М	
3650 1 10			9	м	
3706 1 10				M	
3761 1 10				M	
3773 1 10				M	
3791 1 10				M	
3812.1 10				M	
3829.1 10				M	
3879.3 7				M	
3913.1 10				M	
4187.8 6	$(23/2^+)$		Е		J^{π} : γ to 21/2 ⁺ is D+Q and possible configuration.
					Possible configuration= $\pi (g_{7/2} d_{5/2})^9 \otimes \nu (f_{7/2} h_{11/2}^{-1})$ in (⁷ Li,4n γ) (2015Li21).
4296.7 5	25/2(-)		E		J^{π} : γ to $21/2^{-}$ is Q and γ to $23/2^{+}$ is D+Q; π =- more likely.
4370.5 <i>3</i>	$27/2^{-}$		ΕG		J^{π} : γ to 23/2 ⁻ is E2.
4381.7 5	$25/2^{(-)}$		Е		J^{π} : γ to $21/2^{-}$ is Q; $\pi = -$ more likely.
4430.3 5	$25/2^{(-)}$		Е		J^{π} : γ to 23/2 ⁻ is D+O: tentative π =- based on
4546 9 7	,		F		$\pi(g_{7/2}d_{5/2})^8h_{11/2}^1$ configuration.
4592.0.6	$(25/2^{-})$		Ē		I^{π} : γ to $21/2^{-}$ is (O): $\pi = -$ more likely
4740.6.4	$(23/2^{-})$ $27/2^{(-)}$		FG		I^{π} : γ to $23/2^{-}$ is (c), π^{-} more likely.
4826.8 5	27/2 25/2(+)		EG		J : γ to $23/2^+$ is $D + O$: tentative $\pi - 1$ based on
4020.0 5	23/2		E		$\pi(g_{7/2}d_{5/2})^{7}h_{11/2}^{2}$ configuration.
4907.0 ð	20/2(-)		Ľ		I^{T} (07/2= 1 D (0) I^{T} (1) () (27/2(-))
4988.5 5	29/2		E		J^{π} : γ to 27/2 is D+Q; π =- more likely from γ to 25/2 γ .
5039.9 5	29/2		E		J^{Λ} : γ to $2//2$ is D+Q.
5103.6 6	$31/2^{(-)}$		E		J^{π} : γ to $2^{7}/2^{-1}$ is Q; π =- more likely.
5142.5 6	27/2(+)		Е		J^{π} : γ to $25/2^{(+)}$ is D+Q; tentative π =+ based on $\pi(g_{7/2}d_{5/2})^7h_{1/2}^2$ configuration.
5747.4 9	29/2 ⁽⁺⁾		Е		J^{π} : γ to $27/2^{(+)}$ is D+Q; tentative π =+ based on $\pi(g_{7/2}d_{52})^{7}h_{+,\infty}^{2}$ configuration.
6116.0 5	7/2 ⁽⁺⁾	0.052 eV 10		М	J^{π} : $\gamma(\theta)$ for γ' 's to $5/2^+$ and $7/2^+$, γ to $3/2^+$ in (γ, γ') . T _{1/2} : Γ from 1979Mo19, 1972Wo21
6239.6 9	(35/2 ⁻)		Е		J^{π} : based on possible configuration= $\pi (g_{7/2} d_{5/2})^8 h_{11/2}^1$
6878.6 4	7/2+	0.085 eV 10		М	with maximum angular momentum of $35/2^{-}$. J ^{π} : $\gamma(\theta)$ and polarization of 6877 γ M1 in (γ, γ')
					(1972w021). $T_{1/2}$: Γ from (1979Mo19).

¹⁴¹Pr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
7186.5 6	5/2		М	J^{π} : $\gamma(\theta)$ in (γ, γ') (1971Pa01).
7255.8 5	5/2-	0.29 eV 3	M	J ^{π} : $\gamma(\theta)$ and polarization of 7256 γ E1 in (γ, γ') (1972Wo21).
				$T_{1/2}$: Γ from (1979Mo19,1974Wo05).
7630.7 10	5/2+	0.090 eV +40-10	М	$T_{1/2}$: Γ from 1979Mo19. Other: 0.133 eV 23 (1969Mo11).
				J ^{π} : $\gamma(\theta)$ and polarization of 7632 γ M1 in (γ, γ') (1972Wo21).
7915.2 10	5/2+	0.007 eV 3	M	J ^{π} : $\gamma(\theta)$ and polarization of 7915 γ M1 in (γ, γ') (1972Wo21).
				T _{1/2} : Γ from (1974Wo05,1979Mo19).
8880.5 5	(5/2,7/2)		М	J^{π} : γ 's to $7/2^+$ and $3/2^+$.
9751	7/2 ^{- &}	60 keV	Н	$T_{1/2}$: resonance Γ from 1965Vo03.
10405	3/2 ^{-&}	84 keV	Н	$T_{1/2}$: resonance Γ from 1965Vo03.
10882	1/2-&	91 keV	Н	J^{π} : from polarization in (p,p) (1968Ve07), L=1 in (p,p').
				$T_{1/2}$: resonance Γ from 1965Vo03.
11100?	$(9/2^{-})^{\&}$		Н	
11251	$(5/2)^{-8}$	77 keV	Н	$T_{1/2}$: resonance Γ from 1965Vo03.
11493?	(5/2 ⁻) ^{&}	100 keV	Н	$T_{1/2}$: resonance Γ from 1965Vo03.

[†] From least-squares fit to E γ . χ^2 norm =1.63 greater than χ^2 critical=1.20. [‡] Based on specific arguments as given in comments. Most J^{π} values were adopted from the (n,n' γ) dataset based on measured γ -ray multipolarities and $T_{1/2}$'s, and calculations. For levels from (α ,2n γ) monotonic increase of J>9/2 with increasing E was supported by observation or non observation of crossover γ' s and excitation functions. For levels from (⁷Li,4n γ) deduced configurations were used in J^{π} assignments.

Possible member of $h_{11/2} \otimes 2^+$ multiplet $(n,n'\gamma)$.

[@] From $(n,n'\gamma)$ (2008Sc17, DSAM).

[&] L in (p,p), analogs to the lowest states in 141 Ce.

$\gamma(^{141}\mathrm{Pr})$

Additional information 2.

9

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	${\rm I_{\gamma}}^\dagger$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$\delta^{\#}$	$\alpha^{@}$	Comments
145.4434	7/2+	145.4433 14	100	0.0	5/2+	M1+E2	+0.069 7	0.449 6	B(M1)(W.u.)=2.658×10 ⁻³ 44; B(E2)(W.u.)=0.35 +8-7 α (K)=0.383 5; α (L)=0.0529 7; α (M)=0.01115 16 α (N)=0.002493 35; α (O)=0.000401 6; α (P)=2.93×10 ⁻⁵ 4
1117.67	11/2-	972.14 10	100.0 3	145.4434	7/2+	M2(+E3)	+0.17 +9-8	0.00832 17	E _γ ,I _γ ,Mult.,δ: from β ⁻ decay. B(M2)(W.u.)=0.238 +7-10; B(E3)(W.u.)=7 +8-5 α(K)=0.00708 15; α(L)=0.000976 18; α(M)=0.000206 4 α(N)=4.61×10 ⁻⁵ 9; α(O)=7.44×10 ⁻⁶ 14; α(P)=5.52×10 ⁻⁷ 12 E : from (α 2nx)
		1117.60 <i>11</i>	11.4 3	0.0	5/2+	E3		0.00345 5	δ: +0.17 +9-8 or >+6 (n,n'γ) (second value excluded by RUL). B(E3)(W.u.)=9.99 32 α(N)=2.057×10 ⁻⁵ 29; α(O)=3.26×10 ⁻⁶ 5; α(P)=2.163×10 ⁻⁷ 30; α(IPF)=1.217×10 ⁻⁷ 18 α(K)=0.00290 4; α(L)=0.000434 6; α(M)=9.24×10 ⁻⁵ 13
1126.83	3/2+	981.1 3	2.77 10	145.4434	7/2+	(E2)		2.22×10 ⁻³ 3	E _γ : from (α,2nγ). I _γ : from (n,n'γ). Other: 10.5 <i>12</i> (α,2nγ) (1975Fr18). $\alpha(K)=0.001890$ 26; $\alpha(L)=0.000257$ 4; $\alpha(M)=5.42\times10^{-5}$ 8 $\alpha(N)=1.208\times10^{-5}$ <i>17</i> ; $\alpha(O)=1.928\times10^{-6}$ 27; $\alpha(P)=1.357\times10^{-7}$ <i>19</i>
		1126.50 <i>21</i>	100.00 <i>10</i>	0.0	5/2+	M1+E2	+0.47 6	0.00225 4	B(E2)(W.u.)<2.12 I_{γ} : from (n,n' γ). Other: 2.7 3 (ε decay (2.49 h)). α (K)=0.00193 4; α (L)=0.000250 5; α (M)=5.24×10 ⁻⁵ 9 α (N)=1.172×10 ⁻⁵ 21; α (O)=1.895×10 ⁻⁶ 35;
1292.69	(5/2)+	1146.90 22	66.7 8	145.4434	7/2+	E2		1.60×10 ⁻³ 2	$\begin{aligned} &\alpha(P) = 1.431 \times 10^{-7} \ 28; \ \alpha(IPF) = 9.18 \times 10^{-7} \ 14 \\ &B(M1)(W.u.) < 0.068; \ B(E2)(W.u.) < 8.12 \\ &B(E2)(W.u.) = 7.9 \ +22 - 18 \\ &\alpha(K) = 0.001366 \ 19; \ \alpha(L) = 0.0001819 \ 25; \\ &\alpha(M) = 3.82 \times 10^{-5} \ 5 \end{aligned}$

From ENSDF

 $^{141}_{59}\mathrm{Pr}_{82}\text{-}9$

	Adopted Levels, Gammas (continued)											
	γ ⁽¹⁴¹ Pr) (continued)											
E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{@}$	Comments				
								B(E2)(W.u.)=7.9 +22-18 α (K)=0.001366 19; α (L)=0.0001819 25; α (M)=3.82×10 ⁻⁵ 5 α (N)=8.52×10 ⁻⁶ 12; α (O)=1.366×10 ⁻⁶ 19; α (P)=9.83×10 ⁻⁸ 14; α (IPF)=1.715×10 ⁻⁶ 26				
1292.69	(5/2)+	1292.53 22	100.0 8	0.0	5/2+	E2+M1	0.00151 24	α (K)=0.00128 21; α (L)=0.000166 25; α (M)=3.5×10 ⁻⁵ 5 α (N)=7.8×10 ⁻⁶ 12; α (O)=1.26×10 ⁻⁶ 20; α (P)=9.4×10 ⁻⁸ 17; α (IPF)=1.987×10 ⁻⁵ 32				
1298.71	1/2+	1298.44 22	100	0.0	5/2+	E2	1.26×10 ⁻³ 2	B(E2)(W.u.)=10.3 +44-39 α (K)=0.001064 15; α (L)=0.0001398 20; α (M)=2.93×10 ⁻⁵ 4 α (N)=6.54×10 ⁻⁶ 9; α (O)=1.051×10 ⁻⁶ 15; α (P)=7.67×10 ⁻⁸ 11; α (IPF)=2.081×10 ⁻⁵ 29				
1436.12	3/2+	309.36 21	2.9 15	1126.83	3/2+	(E2+M1)	0.052 6	$\alpha(K) = 0.043 \ 6; \ \alpha(L) = 0.00693 \ 30; \ \alpha(M) = 0.00148 \ 9$ $\alpha(N) = 0.00328 \ 16; \ \alpha(O) = 5.12 \times 10^{-5} \ 10; \ \alpha(P) = 3.1 \times 10^{-6} \ 7$				
		1290.67 24	100.0 15	145.4434	7/2+	(E2)	1.28×10 ⁻³ 2	B(E2)(W.u.)=8.2 +23-22 α (K)=0.001077 <i>15</i> ; α (L)=0.0001415 <i>20</i> ; α (M)=2.97×10 ⁻⁵ <i>4</i> α (N)=6.62×10 ⁻⁶ <i>9</i> ; α (O)=1.064×10 ⁻⁶ <i>15</i> ; α (P)=7.76×10 ⁻⁸ <i>11</i> ; α (IPF)=1.938×10 ⁻⁵ 27				
		1436.1 <i>3</i>	88.0 15	0.0	5/2+	(E2+M1)	0.00125 18	$\alpha(K)=0.00103 \ 15; \ \alpha(L)=0.000132 \ 19; \ \alpha(M)=2.8\times10^{-5} \ 4$ $\alpha(N)=6.2\times10^{-6} \ 9; \ \alpha(O)=1.00\times10^{-6} \ 14; \ \alpha(P)=7.5\times10^{-8} \ 12;$ $\alpha(IPF)=5.69\times10^{-5} \ 12$				
1452.36	(7/2)+	1306.63 <i>21</i>	100.0 5	145.4434	7/2+	M1+E2	0.00148 23	$\alpha(K)=0.00125 \ 20; \ \alpha(L)=0.000162 \ 25; \ \alpha(M)=3.4\times10^{-5} \ 5 \\ \alpha(N)=7.6\times10^{-6} \ 12; \ \alpha(O)=1.23\times10^{-6} \ 19; \ \alpha(P)=9.2\times10^{-8} \ 16; \\ \alpha(IPF)=2.26\times10^{-5} \ 4 \\ \delta: \ +0.90 \ +31-20 \ \text{or} \ -29 \ +7-6 \ (n,n'\gamma).$				
		1452.20 24	22.6 5	0.0	5/2+	(M1+E2)	0.00123 17	$\begin{aligned} \alpha(\mathrm{N}) &= 6.0 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 9.7 \times 10^{-7} \ 14; \ \alpha(\mathrm{P}) = 7.3 \times 10^{-8} \ 12; \\ \alpha(\mathrm{IPF}) &= 6.21 \times 10^{-5} \ 13 \\ \alpha(\mathrm{K}) &= 0.00100 \ 15; \ \alpha(\mathrm{L}) = 0.000129 \ 18; \ \alpha(\mathrm{M}) = 2.7 \times 10^{-5} \ 4 \\ \delta: \ -5 \ +2 - 6 \ \mathrm{or} \ -0.48 \ +12 - 26 \ (\mathrm{n},\mathrm{n}'\gamma). \end{aligned}$				
1455.5 1457.36	+ 9/2 ⁺	1455.5 <i>3</i> 339.15 <i>24</i>	100 1.23 <i>14</i>	0.0 1117.67	5/2+ 11/2 ⁻	(E1)	0.00953 13	E _γ : from (α ,2nγ). B(E1)(W.u.)=2.2×10 ⁻⁴ +6-5 α (K)=0.00818 12; α (L)=0.001072 15; α (M)=0.0002244 32 α (N)=4.99×10 ⁻⁵ 7; α (O)=7.94×10 ⁻⁶ 11; α (P)=5.53×10 ⁻⁷ 8				
		1311.83 22	100.0 6	145.4434	7/2+	M1+E2	0.00147 23	$\alpha(K) = 0.00124 \ 20; \ \alpha(L) = 0.000161 \ 24; \ \alpha(M) = 3.4 \times 10^{-5} \ 5$ $\alpha(N) = 7.5 \times 10^{-6} \ 11; \ \alpha(O) = 1.22 \times 10^{-6} \ 19; \ \alpha(P) = 9.1 \times 10^{-8} \ 16;$ $\alpha(IPF) = 2.36 \times 10^{-5} \ 4$ $\delta: = 0.053 \ + 22 = 26 \ \text{or} \ + 8.9 \ + 17 = 19 \ (n \ n'2)$				
		1457.42 23	35.0 6	0.0	5/2+	(E2)	1.05×10 ⁻³ 2	B(E2)(W.u.)=1.95 + 47 - 42				

From ENSDF

Adopted Levels, Gammas (continued)												
	$\gamma(^{141}\text{Pr})$ (continued)											
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α@	Comments				
1493.98	11/2+	1348.51 22	100	145.4434	7/2+	E2	1.18×10 ⁻³ 2	$\begin{aligned} \alpha(\text{K}) &= 0.000850 \ 12; \ \alpha(\text{L}) = 0.0001103 \ 15; \ \alpha(\text{M}) = 2.309 \times 10^{-5} \ 32 \\ \alpha(\text{N}) &= 5.16 \times 10^{-6} \ 7; \ \alpha(\text{O}) = 8.30 \times 10^{-7} \ 12; \ \alpha(\text{P}) = 6.12 \times 10^{-8} \ 9; \\ \alpha(\text{IPF}) &= 6.27 \times 10^{-5} \ 9 \\ \text{B}(\text{E2})(\text{W.u.}) &= 6.3 \ +31 - 26 \\ \alpha(\text{N}) &= 6.04 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 9.72 \times 10^{-7} \ 14; \ \alpha(\text{P}) = 7.12 \times 10^{-8} \ 10; \\ \alpha(\text{IPF}) &= 3.16 \times 10^{-5} \ 4 \end{aligned}$				
1520.89	9/2+	402.87 23	2.05 11	1117.67	11/2-	(E1)	0.00624 9	$\begin{aligned} \alpha(K) &= 0.000988 \ 14; \ \alpha(L) = 0.0001292 \ 18; \ \alpha(M) = 2.71 \times 10^{-5} \ 4 \\ E_{\gamma}: \text{ placed at } 1494 \text{ level in Coul. ex. data.} \\ B(E1)(W.u.) &= 4.6 \times 10^{-4} \ 6 \\ \alpha(N) &= 3.25 \times 10^{-5} \ 5; \ \alpha(O) = 5.19 \times 10^{-6} \ 7; \ \alpha(P) = 3.66 \times 10^{-7} \ 5 \end{aligned}$				
		1375.56 25	11.7 <i>3</i>	145.4434	7/2+	(E2+M1)	0.00135 20	$\alpha(K)=0.00536 \ 8; \ \alpha(L)=0.000698 \ 10; \ \alpha(M)=0.0001461 \ 21$ $\alpha(K)=0.00112 \ 17; \ \alpha(L)=0.000145 \ 21; \ \alpha(M)=3.0\times10^{-5} \ 4$ $\alpha(N)=6.8\times10^{-6} \ 10; \ \alpha(O)=1.10\times10^{-6} \ 16; \ \alpha(P)=8.2\times10^{-8} \ 14;$				
		1520.98 22	100.0 3	0.0	5/2+	E2	9.95×10 ⁻⁴ 14	$\begin{array}{l} \alpha(\mathrm{IPF}) = 3.90 \times 10^{-5} \ 7 \\ \mathrm{B(E2)(W.u.)} = 9.3 \ 11 \\ \alpha(\mathrm{K}) = 0.000783 \ 11; \ \alpha(\mathrm{L}) = 0.0001012 \ 14; \ \alpha(\mathrm{M}) = 2.119 \times 10^{-5} \ 30 \\ \alpha(\mathrm{N}) = 4.73 \times 10^{-6} \ 7; \ \alpha(\mathrm{O}) = 7.62 \times 10^{-7} \ 11; \ \alpha(\mathrm{P}) = 5.64 \times 10^{-8} \ 8; \end{array}$				
1559.0 1580.05	5/2-	1559 287.06 22	100 3.06 <i>14</i>	0.0 1292.69	5/2 ⁺ (5/2) ⁺	(E1)	0.01455 21	$\alpha(\text{IPF})=8.41\times10^{-5} \ 12$ $\text{E}_{\gamma}: \text{ from } (\gamma,\gamma,).$ $\text{B}(\text{E1})(\text{W.u.})=0.00106 \ 24$ $\alpha(\text{K})=0.01247 \ 18; \ \alpha(\text{L})=0.001647 \ 23; \ \alpha(\text{M})=0.000345 \ 5$ $\alpha(\text{M})=7.65\times10^{-5} \ 12 \times 10^{-5} \ 17 \ \alpha(\text{M})=8.22\times10^{-7} \ 12$				
		1434.54 25	100.0 7	145.4434	7/2+	E1	6.31×10 ⁻⁴ 9	$\begin{array}{l} a(N)=7.66\times10^{-11}, a(O)=1.215\times10^{-17}, a(P)=8.55\times10^{-17}\\ B(E1)(W.u.)=2.8\times10^{-4} \ 6\\ a(N)=2.323\times10^{-6} \ 33; \ a(O)=3.75\times10^{-7} \ 5; \ a(P)=2.84\times10^{-8} \ 4;\\ a(IPF)=0.0001661 \ 23 \end{array}$				
		1580.06 25	35.8 7	0.0	5/2+	(E1)	6.69×10 ⁻⁴ 9	$\alpha(K)=0.000402 \ 6; \ \alpha(L)=4.99\times10^{-5} \ 7; \ \alpha(M)=1.040\times10^{-5} \ 15$ B(E1)(W.u.)=7.4×10 ⁻⁵ \ 16 $\alpha(K)=0.000342 \ 5; \ \alpha(L)=4.23\times10^{-5} \ 6; \ \alpha(M)=8.81\times10^{-6} \ 12$ $\alpha(N)=1.969\times10^{-6} \ 28; \ \alpha(O)=3.18\times10^{-7} \ 4; \ \alpha(P)=2.414\times10^{-8} \ 34;$ $\alpha(PE)=0.000274 \ 4$				
1608.26	(3/2)+	1608.20 <i>23</i>	100	0.0	5/2+	(E2+M1)	0.00106 12	$\alpha(K) = 0.0081 I1; \ \alpha(L) = 0.000104 I3; \ \alpha(M) = 2.17 \times 10^{-5} 27$ $\alpha(K) = 4.8 \times 10^{-6} 6; \ \alpha(O) = 7.8 \times 10^{-7} I0; \ \alpha(P) = 5.9 \times 10^{-8} 8;$ $\alpha(D) = 4.8 \times 10^{-6} 6; \ \alpha(O) = 7.8 \times 10^{-7} I0; \ \alpha(P) = 5.9 \times 10^{-8} 8;$				
1650.85	(9/2+)	532.6 2	12	1117.67	11/2-	[E1]	0.00326 5	$\alpha(\text{IFF})=0.0001196~52$ B(E1)(W.u.)=0.00125 29 $\alpha(\text{N})=1.680\times10^{-5}~24; \ \alpha(\text{O})=2.69\times10^{-6}~4; \ \alpha(\text{P})=1.939\times10^{-7}~27$ $\alpha(\text{K})=0.00280~4; \ \alpha(\text{L})=0.000361~5; \ \alpha(\text{M})=7.54\times10^{-5}~11$ L : from (9.21)				
		1506.1 <i>3</i>	8.58 22	145.4434	7/2+	(E2+M1)	0.00116 15	$\alpha(K)=0.00093 \ 13; \ \alpha(L)=0.000119 \ 16; \ \alpha(M)=2.49\times10^{-5} \ 33$				

						Adopted I	Levels, Gan	mas (continued)	
						<u>)</u>	v(¹⁴¹ Pr) (con	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	$\delta^{\#}$	α [@]	Comments
1650.85	(9/2+)	1651.39 23	100.00 22	0.0	5/2+	(E2)		9.13×10 ⁻⁴ 13	$\begin{aligned} \alpha(N) &= 5.6 \times 10^{-6} \ 8; \ \alpha(O) &= 9.0 \times 10^{-7} \ 12; \ \alpha(P) &= 6.8 \times 10^{-8} \\ 10; \ \alpha(IPF) &= 8.04 \times 10^{-5} \ 19 \\ \delta: \ -0.23 \ 6 \ or \ < -7.9 \ (n,n'\gamma). \\ B(E2)(W.u.) &= 6.6 \ +10 - 9 \\ \alpha(K) &= 0.000670 \ 9; \ \alpha(L) &= 8.60 \times 10^{-5} \ 12; \\ \alpha(M) &= 1.799 \times 10^{-5} \ 25 \\ \alpha(N) &= 4.02 \times 10^{-6} \ 6; \ \alpha(O) &= 6.48 \times 10^{-7} \ 9; \end{aligned}$
1657.07	$1/2^{+}$	358.17 <i>23</i>	16.6 8	1298.71	$1/2^{+}$				$\alpha(P) = 4.83 \times 10^{-8}$ 7; $\alpha(IPF) = 0.0001343$ 19
		530.03 21	100.0 17	1126.83	3/2+	E2		0.00964 14	$\alpha(K)=0.00804 \ 11; \ \alpha(L)=0.001262 \ 18; \ \alpha(M)=0.000269 \ 4$ $\alpha(N)=5.97\times10^{-5} \ 8; \ \alpha(O)=9.30\times10^{-6} \ 13; \ \alpha(P)=5.62\times10^{-7} \ 8$ $B(E2)(Wu) > 223 \ 96$
		1657.5 <i>3</i>	93.9 17	0.0	5/2+	(E2)		9.10×10 ⁻⁴ 13	$\alpha(K) = 0.000665 \ 9; \ \alpha(L) = 8.54 \times 10^{-5} \ 12; \alpha(M) = 1.786 \times 10^{-5} \ 25 \alpha(N) = 3.99 \times 10^{-6} \ 6; \ \alpha(O) = 6.43 \times 10^{-7} \ 9; \alpha(P) = 4.79 \times 10^{-8} \ 7; \ \alpha(IPF) = 0.0001368 \ 19 P(F2)(Wu) > 0.7$
1767.36	13/2+	273.38 21	23.1 9	1493.98	11/2+	M1+E2	+0.08 6	0.0802 11	$\begin{aligned} \alpha(\text{K}) &= 0.0684 \ 10; \ \alpha(\text{L}) &= 0.00926 \ 13; \ \alpha(\text{M}) &= 0.001950 \ 28 \\ \alpha(\text{N}) &= 0.000436 \ 6; \ \alpha(\text{O}) &= 7.03 \times 10^{-5} \ 10; \\ \alpha(\text{P}) &= 5.21 \times 10^{-6} \ 8 \\ \text{B}(\text{M1})(\text{W.u.}) &< 0.54; \ \text{B}(\text{E2})(\text{W.u.}) &< 82.72 \\ \text{Mult}, \delta: \ \text{from} \ (\alpha, 2n\gamma). \\ \delta_{1} &= 0.07 \pm 8 = 7 \ (n \ n'\alpha) \end{aligned}$
		310.3 3	3.4 1	1457.36	9/2+	(E2)		0.0455 7	α(K)=0.0364 5; α(L)=0.00714 10; α(M)=0.001547 22 α(N)=0.000340 5; α(O)=5.13×10 ⁻⁵ 7; α(P)=2.388×10 ⁻⁶ 34 E _γ ,I _γ ,Mult.: from (α,2nγ) (not seen in (n,n'γ)). B(E ₂)(W,u,)<338 upper limit exceeds RUL=300.
1706 47	(5/2+)	649.62 21	100.0 9	1117.67	11/2-	E1		2.11×10 ⁻³ 3	$\begin{aligned} \alpha(\mathbf{K}) = 0.001816\ 25;\ \alpha(\mathbf{L}) = 0.0002319\ 33;\\ \alpha(\mathbf{M}) = 4.84 \times 10^{-5}\ 7\\ \alpha(\mathbf{N}) = 1.080 \times 10^{-5}\ 15;\ \alpha(\mathbf{O}) = 1.733 \times 10^{-6}\ 24;\\ \alpha(\mathbf{P}) = 1.266 \times 10^{-7}\ 18\\ \mathbf{B}(\mathbf{E1})(\mathbf{W}.\mathbf{u}.) < 0.0019\\ \mathbf{M}\mathbf{ult.}:\ \text{from } (\alpha, 2n\gamma). \end{aligned}$
1/80.4/	(5/2.)	494.0 <i>3</i> 658.8 <i>3</i>	4.9 <i>3</i>	1292.69	$(3/2)^{+}$ $3/2^{+}$	(E2+M1)		0.0070 15	$ \begin{array}{l} \alpha({\rm K}) = 0.0060 \ 13; \ \alpha({\rm L}) = 0.00082 \ 14; \ \alpha({\rm M}) = 0.000173 \ 28 \\ \alpha({\rm N}) = 3.9 \times 10^{-5} \ 6; \ \alpha({\rm O}) = 6.2 \times 10^{-6} \ 11; \ \alpha({\rm P}) = 4.4 \times 10^{-7} \\ 11 \end{array} $

From ENSDF

Adopted Levels, Gammas (continued)												
						$\gamma(^1$	⁴¹ Pr) (continued)	1				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.	α@	Comments				
1786.47	(5/2+)	1640.9 <i>3</i>	46.7 11	145.4434	7/2+	(E2+M1)	0.00103 12	$\alpha(P)=4.4\times10^{-7} \ II$ $\alpha(K)=0.00078 \ I0; \ \alpha(L)=9.9\times10^{-5} \ I2; \ \alpha(M)=2.08\times10^{-5} \ 25$ $\alpha(N)=4.6\times10^{-6} \ 6; \ \alpha(O)=7.5\times10^{-7} \ 9; \ \alpha(P)=5.7\times10^{-8} \ 8; $ $\alpha(IPF)=0.000133 \ 4$				
		1786.40 25	100.0 11	0.0	5/2+	(E2+M1)	0.00095 9	$\alpha(\mathbf{K}) = 0.00065 \ 7; \ \alpha(\mathbf{L}) = 8.3 \times 10^{-5} \ 9; \ \alpha(\mathbf{M}) = 1.73 \times 10^{-5} \ 19$ $\alpha(\mathbf{N}) = 3.9 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) = 6.3 \times 10^{-7} \ 7; \ \alpha(\mathbf{P}) = 4.8 \times 10^{-8} \ 6;$				
1796.21	15/2+	28.9 2	57 2	1767.36	13/2+	(M1)	7.30 18	α (IPF)=0.000198 6 B(M1)(W.u.)=0.090 +10-9 α (L)=5.76 14; α (M)=1.216 30 α (N)=0.272 7; α (O)=0.0436 11; α (P)=0.00317 8				
		302.6 <i>3</i>	100 <i>3</i>	1493.98	11/2+	E2	0.0492 7	E _γ ,I _γ : from (α,2nγ). B(E2)(W.u.)=0.89 +11-9 α(K)=0.0392 6; α(L)=0.00780 11; α(M)=0.001693 24 α(N)=0.000372 5; α(O)=5.61×10 ⁻⁵ 8; α(P)=2.57×10 ⁻⁶ 4				
1812.37	(9/2+)	359.74 22	15.3 7	1452.36	(7/2)+	(E2+M1)	0.034 5	E_{γ}, I_{γ} : from $(\alpha, 2n\gamma)$. $\alpha(K)=0.028 5; \alpha(L)=0.00437 11; \alpha(M)=0.000931 15$ $\alpha(N)=0.000207 4; \alpha(O)=3.25\times10^{-5} 15; \alpha(P)=2.1\times10^{-6} 5$ δ : +0.11 13 or +3.5 +28-12 (n,n' γ).				
		1667.13 24	100.0 13	145.4434	7/2+	(E2+M1)	0.00102 11	$\alpha(K)=0.00075 \ 9; \ \alpha(L)=9.6\times10^{-5} \ 12; \ \alpha(M)=2.01\times10^{-5} \ 24$ $\alpha(N)=4.5\times10^{-6} \ 5; \ \alpha(O)=7.3\times10^{-7} \ 9; \ \alpha(P)=5.5\times10^{-8} \ 8; \ \alpha(PF)=0.000145 \ 4 \ 5; \ \alpha(DF)=0.000145 \ 4 \ 4 \ 6; \ \alpha(DF)=0.000145 \ 4 \ 6; \ $				
		1812.7 3	52.8 12	0.0	5/2+	(E2)	8.58×10 ⁻⁴ 12	B(E2)(W.u.)=0.26 +16-12 α (N)=3.35×10 ⁻⁶ 5; α (O)=5.41×10 ⁻⁷ 8; α (P)=4.05×10 ⁻⁸ 6; α (IPF)=0.0002046 29				
1842.14	$(7/2^+)$	384.8 <i>3</i>	1.9 <i>3</i>	1457.36	9/2+	(E2+M1)	0.028 5	$\alpha(K)=0.000563 \ 8; \ \alpha(L)=7.18\times10^{-5} \ 10; \ \alpha(M)=1.500\times10^{-5} \ 21 \ \alpha(K)=0.024 \ 4; \ \alpha(L)=0.00358 \ 17; \ \alpha(M)=0.000762 \ 28 \ \alpha(N)=0.000160 \ 7; \ \alpha(O)=2.66\times10^{-5} \ 18; \ \alpha(P)=1.7\times10^{-6} \ 4$				
		389.8 <i>3</i>	1.4 <i>3</i>	1452.36	$(7/2)^+$	(E2+M1)	0.027 5	$\alpha(K) = 0.003169$ f, $\alpha(C) = 2.50\times10^{-5}$ 18, $\alpha(K) = 0.00733$ 30 $\alpha(K) = 0.0023$ 4; $\alpha(L) = 0.00345$ 18; $\alpha(M) = 0.000733$ 30 $\alpha(K) = 0.000163$ 8; $\alpha(O) = 2.57\times10^{-5}$ 10; $\alpha(D) = 1.7\times10^{-6}$ 4				
		1696.6 <i>3</i>	54.6 11	145.4434	7/2+	(E2+M1)	0.00100 11	$\alpha(N)=4.3\times10^{-6} 5; \ \alpha(O)=7.0\times10^{-7} 8; \ \alpha(P)=5.3\times10^{-8} 7; \\ \alpha(IPF)=0.000158 5$				
		1842.1 <i>3</i>	100.0 <i>11</i>	0.0	5/2+	(E2+M1)	0.00094 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00072 \; 9; \; \alpha(\mathbf{L}) = 9.2 \times 10^{-5} \; 11; \; \alpha(\mathbf{M}) = 1.93 \times 10^{-5} \; 23 \\ &\delta: \; +0.52 \; +28 - 21 \; \text{or} \; -2.8 \; +1 - 4 \; (\mathbf{n}, \mathbf{n}' \gamma). \\ &\alpha(\mathbf{K}) = 0.00061 \; 7; \; \alpha(\mathbf{L}) = 7.8 \times 10^{-5} \; 8; \; \alpha(\mathbf{M}) = 1.63 \times 10^{-5} \; 17 \\ &\alpha(\mathbf{N}) = 3.6 \times 10^{-6} \; 4; \; \alpha(\mathbf{O}) = 5.9 \times 10^{-7} \; 6; \; \alpha(\mathbf{P}) = 4.5 \times 10^{-8} \; 5; \\ &\alpha(\mathbf{IPF}) = 0.000225 \; 7 \end{aligned}$				
1849.0		1849	100	0.0	5/2+			δ: -0.5' + 16 - 23 or -4.6 + 17 - 44 (n,n'γ). E _γ : from (γ,γ,).				

From ENSDF

 $^{141}_{59}\mathrm{Pr}_{82}\text{--}13$

 $^{141}_{59}\mathrm{Pr}_{82}\text{--}13$

Adopted Levels, Gammas (continued)												
						$\gamma(^{141})$	Pr) (continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments				
1853.79	(11/2+)	332.66 22	1.1 11	1520.89	9/2+	(E2+M1)	0.042 6	$\alpha(K)=0.035\ 6;\ \alpha(L)=0.00554\ 9;\ \alpha(M)=0.001182\ 32$ $\alpha(N)=0.00262\ 6;\ \alpha(O)=4.10\times10^{-5}\ 9;\ \alpha(P)=2.5\times10^{-6}\ 6$				
		396.51 25	6.3 4	1457.36	9/2+	(E2+M1)	0.026 4	$\alpha(K) = 0.00222, 0; \alpha(G) = 4.10 \times 10^{-5}, \alpha(K) = 2.5 \times 10^{-5}, 0$ $\alpha(K) = 0.022, 4; \alpha(L) = 0.00328, 19; \alpha(M) = 0.000697, 33$ $\alpha(N) = 0.000155, 8; \alpha(O) = 2.44 \times 10^{-5}, 19; \alpha(P) = 1.6 \times 10^{-6}, 4$ $\delta: -0.31 + 14 - 16 \text{ or } -5 + 2 - 11 \text{ (n, n' \gamma)}.$				
		1708.7 <i>3</i>	100.0 4	145.4434	7/2+	(E2)	8.88×10 ⁻⁴ 12	B(E2)(W.u.)=0.8 +5-4 α (K)=0.000628 9; α (L)=8.05×10 ⁻⁵ 11; α (M)=1.683×10 ⁻⁵ 24 α (N)=3.76×10 ⁻⁶ 5; α (O)=6.06×10 ⁻⁷ 8; α (P)=4.53×10 ⁻⁸ 6; α (IPF)=0.0001584 22				
1910.49?		1853.8 8 1764.5 ^{&} 2	32 6 72 [‡]	0.0 145.4434	5/2+ 7/2+							
1912.9		1910.5 ^{&} 2 145.7 795.1	100 [‡]	0.0 1767.36 1117.67	$5/2^+$ $13/2^+$ $11/2^-$			E_{γ} : from (α ,2n γ).				
1975.26	$(3/2^+)$	394.52 25	3.7 12	1580.05	5/2 ⁻	(E1)	0.00657 9	B(E1)(W.u.)= $1.6 \times 10^{-4} + 8 - 7$ $\alpha(K)=0.00564 \ 8; \ \alpha(L)=0.000735 \ 10; \ \alpha(M)=0.0001538 \ 22$				
		523.0 <i>3</i>	17 <i>I</i>	1452.36	(7/2)+	(E2)	0.00999 14	$\alpha(N)=3.42\times10^{-5} 5; \ \alpha(O)=5.46\times10^{-6} 8; \ \alpha(P)=3.85\times10^{-7} 5$ B(E2)(W.u.)=59 +21-19 $\alpha(N)=6.20\times10^{-5} 9; \ \alpha(O)=9.67\times10^{-6} 14; \ \alpha(P)=5.81\times10^{-7} 8$ (K)=0.00822 12; \ \alpha(O)=0.001212 10; \ \alpha(O)=0.00220 4				
		848.6 <i>3</i>	65.9 17	1126.83	3/2+	(E2+M1)	0.0038 8	$\alpha(K)=0.00852\ 12;\ \alpha(L)=0.001515\ 19;\ \alpha(M)=0.000280\ 4$ $\alpha(K)=0.0033\ 7;\ \alpha(L)=0.00044\ 8;\ \alpha(M)=9.2\times10^{-5}\ 16$ $\alpha(K)=2\ 1\times10^{-5}\ 4;\ \alpha(Q)=3\ 3\times10^{-6}\ 6;\ \alpha(P)=2\ 4\times10^{-7}\ 6$				
		1830.0 6	57.6 15	145.4434	7/2+	(E2)	8.54×10 ⁻⁴ 12	$B(E2)(W.u.)=0.38 + 13 - 12 \alpha(N)=3.29 \times 10^{-6} 5; \alpha(O)=5.31 \times 10^{-7} 7; \alpha(P)=3.98 \times 10^{-8} 6; \alpha(IPF)=0.0002125 30$				
		1976.0 5	100 2	0.0	5/2+	(E2+M1)	0.00091 7	$\alpha(K)=0.000553 \ 8; \ \alpha(L)=7.05\times10^{-5} \ 10; \ \alpha(M)=1.473\times10^{-5} \ 21$ $\alpha(K)=0.00053 \ 5; \ \alpha(L)=6.7\times10^{-5} \ 6; \ \alpha(M)=1.41\times10^{-5} \ 14$ $\alpha(N)=3.15\times10^{-6} \ 31; \ \alpha(O)=5.1\times10^{-7} \ 5; \ \alpha(P)=3.9\times10^{-8} \ 4;$ $\alpha(IPF)=0.000290 \ 10$				
1986.08	(13/2+)	218.67 22	7.5 10	1767.36	13/2+	(E2+M1)	0.1435 <i>33</i>	α (N)=0.00103 23; α (O)=0.000157 29; α (P)=8.1×10 ⁻⁶ 15 α (K)=0.116 9; α (L)=0.022 5; α (M)=0.0047 11				
		465.41 25	14.9 <i>10</i>	1520.89	9/2+	(E2)	0.01372 19	B(M1)(W.u.): LT 0.35 (if pure M1). α (K)=0.01136 <i>16</i> ; α (L)=0.001864 <i>26</i> ; α (M)=0.000399 <i>6</i> α (N)=8.82×10 ⁻⁵ <i>12</i> ; α (O)=1.366×10 ⁻⁵ <i>19</i> ; α (P)=7.85×10 ⁻⁷ <i>11</i> B(F2)(W µ) < 184 46				
		868.4 <i>3</i>	100.0 13	1117.67	11/2-	(E1)	1.17×10 ⁻³ 2	$\alpha(N)=5.91\times10^{-6} \ 8; \ \alpha(O)=9.51\times10^{-7} \ 13; \ \alpha(P)=7.05\times10^{-8} \ 10$ $\alpha(K)=0.001006 \ 14; \ \alpha(L)=0.0001269 \ 18; \ \alpha(M)=2.65\times10^{-5} \ 4$ $B(E1)(W,u)<7.49\times10^{-4}$				
2000.27	(13/2-)	882.59 21	100	1117.67	11/2-	(E2+M1)	0.0035 7	$\alpha(K)=0.0030\ 6;\ \alpha(L)=0.00040\ 7;\ \alpha(M)=8.4\times10^{-5}\ 15$				

 $^{141}_{59}\mathrm{Pr}_{82}$ -14

	Adopted Levels, Gammas (continued)													
						$\gamma(^{14}$	⁴¹ Pr) (continued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments						
2000.47	(9/2)-	349.58 25	3.1 3	1650.85	(9/2+)	(E1)	0.00884 12	$\begin{aligned} \alpha(N) &= 1.87 \times 10^{-5} \ 33; \ \alpha(O) &= 3.0 \times 10^{-6} \ 6; \ \alpha(P) &= 2.2 \times 10^{-7} \ 5\\ \delta: \ +0.01 \ +62 - 4 \ \text{or} \ +10 \ +11 - 4 \ (n,n'\gamma).\\ B(E1)(W.u.) &= 0.00062 \ +25 - 21\\ \alpha(K) &= 0.00758 \ 11; \ \alpha(L) &= 0.000993 \ 14; \ \alpha(M) &= 0.0002078 \ 29\\ \alpha(K) &= 4.62 \times 10^{-5} \ 7; \ \alpha(O) &= 7.26 \times 10^{-6} \ 10; \ \alpha(B) &= 5.14 \times 10^{-7} \ 7.26 \times 10^{-7} \ 10^{-7} \ 10^{-7} \ 7.26 \times 10^{-7} \ 10^{-7} \ 7.26 \times 10^{-7} \ 10^$						
	542.8 3 4.5 3		1457.36	9/2+	(E1)	0.00312 4	$a(N)=4.02\times10^{-4} + 10^{-8}$ B(E1)(W.u.)=2.4×10 ⁻⁴ + 10 ⁻⁸							
		548.1 <i>3</i>	25.7 21	1452.36	(7/2)+	(E1)	0.00306 4	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00269 \ 4; \ \alpha(\mathrm{L}) = 0.000345 \ 5; \ \alpha(\mathrm{M}) = 7.22 \times 10^{-5} \ 10 \\ \alpha(\mathrm{N}) = 1.609 \times 10^{-5} \ 23; \ \alpha(\mathrm{O}) = 2.58 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 1.860 \times 10^{-7} \ 26 \\ \mathrm{B}(\mathrm{E1})(\mathrm{W.u.}) = 0.0013 \ 5 \\ \alpha(\mathrm{N}) = 1.574 \times 10^{-5} \ 22; \ \alpha(\mathrm{O}) = 2.521 \times 10^{-6} \ 35; \ \alpha(\mathrm{P}) = 1.821 \times 10^{-7} \\ 26 \end{array} $						
		883.1 <i>3</i>		1117.67	$11/2^{-}$			$\alpha(K)=0.00263 4; \alpha(L)=0.000338 5; \alpha(M)=7.06\times10^{-5} 10$						
		1855.2 6	100.0 3	145.4434	7/2+	(E1)	7.84×10 ⁻⁴ 11	B(E1)(W.u.)= $1.3 \times 10^{-4} 5$ α (K)= $0.000263 4$; α (L)= $3.24 \times 10^{-5} 5$; α (M)= $6.74 \times 10^{-6} 9$ α (N)= $1.507 \times 10^{-6} 21$; α (O)= $2.438 \times 10^{-7} 34$; α (P)= 1.856×10^{-8} 26 ; α (PE)= $0.000490 7$						
2003.84	(11/2 ⁺)	545.7 3	33	1457.36	9/2+	(E2+M1)	0.0112 23	$\alpha(N)=6.3\times10^{-5}$ 9; $\alpha(O)=1.01\times10^{-5}$ 15; $\alpha(P)=7.0\times10^{-7}$ 18 $\alpha(K)=0.0095$ 21; $\alpha(L)=0.00135$ 19; $\alpha(M)=0.00028$ 4 $\delta_{1} = 0.40 \pm 19 = 21$ or $-4 \pm 2 = 9$ (n n' α)						
		1858.2 7	100.0 3	145.4434	7/2+	(E2)	8.49×10 ⁻⁴ 12	B(E2)(W.u.)=0.8 +7-4 α (N)=3.20×10 ⁻⁶ 4; α (O)=5.16×10 ⁻⁷ 7; α (P)=3.87×10 ⁻⁸ 5; α (IPF)=0.0002255 32						
2018.12	(3/2+)	438.27 25	8.7 7	1580.05	5/2-	E1	0.00511 7	$\alpha(K)=0.000537 \ 8; \ \alpha(L)=6.85\times10^{-5} \ 10; \ \alpha(M)=1.430\times10^{-5} \ 20$ B(E1)(W.u.)=0.00036 +16-13 $\alpha(K)=0.00439 \ 6; \ \alpha(L)=0.000569 \ 8; \ \alpha(M)=0.0001191 \ 17$ $\alpha(N)=2.65\times10^{-5} \ 4; \ \alpha(O)=4.23\times10^{-6} \ 6; \ \alpha(P)=3.01\times10^{-7} \ 4$						
		565.1 ^{&} 2 719.5 3	15.9 <i>11</i>	1452.36 1298.71	$(7/2)^+$ $1/2^+$	(E2+M1)	0.0057 12	$\alpha(K) = 0.0048 \ I1; \ \alpha(L) = 0.00066 \ I1; \ \alpha(M) = 0.000139 \ 23$ $\alpha(K) = 3.1 \times 10^{-5} \ 5; \ \alpha(Q) = 5.0 \times 10^{-6} \ 0; \ \alpha(R) = 3.6 \times 10^{-7} \ 0; \ \alpha(R) = 3.6 \times 10^$						
		725.2 3	5.1 9	1292.69	$(5/2)^+$	(E2+M1)	0.0056 12	$\alpha(N)=5.1\times10^{-5}5, \alpha(O)=5.0\times10^{-5}9, \alpha(P)=5.0\times10^{-5}9$ $\alpha(K)=0.0047 \ 10; \alpha(L)=0.00065 \ 11; \alpha(M)=0.000136 \ 23$ $\alpha(N)=5.1\times10^{-5}5, \alpha(O)=5.0\times10^{-5}9$						
		1872.1 4	51.5 <i>15</i>	145.4434	7/2+	(E2)	8.47×10 ⁻⁴ 12	$\begin{aligned} \alpha(N) &= 3.0 \times 10^{-5} 5; \ \alpha(O) &= 4.9 \times 10^{-6} 9; \ \alpha(P) &= 3.5 \times 10^{-7} 9 \\ B(E2)(W.u.) &= 0.40 + 18 - 14 \\ \alpha(K) &= 0.000530 7; \ \alpha(L) &= 6.75 \times 10^{-5} 9; \ \alpha(M) &= 1.410 \times 10^{-5} 20 \\ \alpha(N) &= 3.15 \times 10^{-6} 4; \ \alpha(O) &= 5.09 \times 10^{-7} 7; \ \alpha(P) &= 3.82 \times 10^{-8} 5; \\ \alpha(IPF) &= 0.0002319 33 \end{aligned}$						
		2017.5 4	100.0 <i>16</i>	0.0	5/2+	(E2+M1)	0.00090 7	$\alpha(N)=3.01\times10^{-6}\ 28;\ \alpha(O)=4.9\times10^{-7}\ 5;\ \alpha(P)=3.7\times10^{-8}\ 4;\\ \alpha(IPF)=0.000311\ 11\\ \alpha(K)=0.00051\ 5;\ \alpha(L)=6.5\times10^{-5}\ 6;\ \alpha(M)=1.35\times10^{-5}\ 13$						

Adopted Levels, Gammas (continued)												
						$\gamma(^{141}\mathrm{Pr})$) (continued	<u>l)</u>				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult.	$\delta^{\#}$	α [@]	Comments			
2045.11	9/2+	524.1 <i>4</i> 1900.01 <i>22</i>	100	1520.89 145.4434	9/2+ 7/2+	E2+M1		0.00092 8	$ \begin{aligned} &\alpha(\text{K}) = 0.00057 \ 6; \ \alpha(\text{L}) = 7.3 \times 10^{-5} \ 7; \ \alpha(\text{M}) = 1.53 \times 10^{-5} \ 16 \\ &\alpha(\text{N}) = 3.41 \times 10^{-6} \ 35; \ \alpha(\text{O}) = 5.5 \times 10^{-7} \ 6; \ \alpha(\text{P}) = 4.2 \times 10^{-8} \\ &5; \ \alpha(\text{IPF}) = 0.000253 \ 9 \end{aligned} $			
2068.84	17/2+	272.7 1	100 2	1796.21	15/2+	M1+E2	+0.10 8	0.0807 12	δ: -0.49 + 6-8 or -3.4 + 6-8 (n,n'γ). α(K)=0.0688 10; α(L)=0.00933 14; α(M)=0.001965 30 $ α(N)=0.000439 7; α(O)=7.08 \times 10^{-5} 10; $ $ α(P)=5.23 \times 10^{-6} 8 $ F. L.: from (α 2ny)			
2075.50	(5/2+)	301.4 <i>1</i> 425.19 22	2.8 2 7.1 <i>10</i>	1767.36 1650.85	13/2 ⁺ (9/2 ⁺)	(E2)		0.01770 25	$E_{\gamma}, I_{\gamma}: \text{ from } (\alpha, 2n\gamma).$ $E_{\gamma}, I_{\gamma}: \text{ from } (\alpha, 2n\gamma).$ B(E2)(W.u.) = 115 + 48 - 37 $\alpha(K) = 0.01456 \ 20; \ \alpha(L) = 0.002473 \ 35; \ \alpha(M) = 0.000531 \ 7$ $\alpha(N) = 0.0001173 \ 17; \ \alpha(O) = 1.806 \times 10^{-5} \ 25;$			
		495.27 22	11.8 10	1580.05	5/2-	(E1)		0.00384 5	$\alpha(P)=9.9/\times 10^{-7} I4^{-14}$ B(E1)(W.u.)=0.00042 +16-13 $\alpha(N)=1.986\times 10^{-5} 28; \ \alpha(O)=3.18\times 10^{-6} 4; \ \alpha(P)=2.279\times 10^{-7} 32$			
		623.02 22	17.0 13	1452.36	(7/2)+	(E2+M1)		0.0081 17	$\alpha(K)=0.00330 5; \ \alpha(L)=0.000426 6; \ \alpha(M)=8.92\times10^{-5} 13 \\ \alpha(K)=0.0069 15; \ \alpha(L)=0.00095 15; \ \alpha(M)=0.000200 31 \\ \alpha(N)=4.5\times10^{-5} 7; \ \alpha(O)=7.1\times10^{-6} 12; \ \alpha(P)=5.0\times10^{-7} \\ 13 \end{bmatrix}$			
		782.8 3	32.1 16	1292.69	$(5/2)^+$	(E2+M1)		0.0046 10	$\alpha(\mathbf{K})=0.0040 \ 9; \ \alpha(\mathbf{L})=0.00053 \ 9; \ \alpha(\mathbf{M})=0.000112 \ 19 \ \alpha(\mathbf{N})=2.5\times10^{-5} \ 4; \ \alpha(\mathbf{O})=4.0\times10^{-6} \ 7; \ \alpha(\mathbf{P})=2.9\times10^{-7} \ 7$			
		948.6 <i>3</i>	100.0 21	1126.83	3/2+	(E2+M1)		0.0030 6	$\alpha(K) = 0.0025 \ 5; \ \alpha(L) = 0.00034 \ 6; \ \alpha(M) = 7.1 \times 10^{-5} \ 12$ $\alpha(N) = 1.58 \times 10^{-5} \ 28; \ \alpha(O) = 2.5 \times 10^{-6} \ 5; \ \alpha(P) = 1.9 \times 10^{-7} \ 4$			
		1929.7 4	56.4 18	145.4434	7/2+	(E2+M1)		0.00091 7	$\alpha(N)=3.30\times10^{-6} 33; \alpha(O)=5.3\times10^{-7} 5; \alpha(P)=4.1\times10^{-8}$ 5; $\alpha(IPF)=0.000267 9$ $\alpha(K)=0.00056 6; \alpha(I)=7.1\times10^{-5} 7; \alpha(M)=1.48\times10^{-5} 15$			
		2075.1 5	36.8 16	0.0	5/2+	(E2+M1)		0.00090 6	$\alpha(\mathbf{K}) = 0.00048 \ d; \ \alpha(\mathbf{L}) = 6.1 \times 10^{-5} \ 5; \ \alpha(\mathbf{M}) = 1.27 \times 10^{-5} \ 11 \\ \alpha(\mathbf{N}) = 2.85 \times 10^{-6} \ 26; \ \alpha(\mathbf{O}) = 4.6 \times 10^{-7} \ 4; \\ \alpha(\mathbf{N}) = 2.51 \times 10^{-8} \ 25; \ \alpha(\mathbf{M}) = 0.00240 \ 12$			
2100.91	(3/2 ⁺ ,5/2 ⁺)	664.4 <i>3</i>	13.7 8	1436.12	3/2+	(E2+M1)		0.0069 15	$\alpha(\mathbf{r}) = 3.51 \times 10^{-5} 35; \alpha(\mathbf{IP}\mathbf{r}) = 0.000540 13$ $\alpha(\mathbf{K}) = 0.0059 13; \alpha(\mathbf{L}) = 0.00081 13; \alpha(\mathbf{M}) = 0.000170 27$ $\alpha(\mathbf{N}) = 3.8 \times 10^{-5} 6; \alpha(\mathbf{O}) = 6.1 \times 10^{-6} 11; \alpha(\mathbf{P}) = 4.3 \times 10^{-7}$			
		974.4 5	100.0 14	1126.83	3/2+	(E2+M1)		0.0028 5	$\alpha(K)=0.0024 5; \alpha(L)=0.00032 5; \alpha(M)=6.6\times10^{-5} 11$ $\alpha(N)=1.48\times10^{-5} 26; \alpha(O)=2.4\times10^{-6} 4; \alpha(P)=1.8\times10^{-7}$			
		2102.0 6	13.5 <i>13</i>	0.0	5/2+	(E2+M1)		0.00090 6	$\alpha(K)=0.00047 4; \alpha(L)=5.9\times10^{-5} 5; \alpha(M)=1.24\times10^{-5} 11$			

					Adopt	ed Levels, Ga	ammas (continue	ed)
						$\gamma(^{141}\mathrm{Pr})$ (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult.	$\alpha^{@}$	Comments
2105.02	(5/2-)	525 2 3	8 2 10	1580.05	5/2-	$(\mathbf{E}_2 + \mathbf{M}_1)$	0.0124.25	$\alpha(N)=2.77\times10^{-6}\ 24;\ \alpha(O)=4.5\times10^{-7}\ 4;\ \alpha(P)=3.42\times10^{-8}$ 33; $\alpha(IPF)=0.000353\ 13$ $\alpha(D)=7\ 0\times10^{-5}\ 0;\ \alpha(Q)=1\ 12\times10^{-5}\ 16;\ \alpha(P)=7\ 7\times10^{-7}\ 10$
2103.02	(3/2)	525.5 5	0.2 10	1500.05	5/2	(E2+W11)	0.0124 25	$\alpha(K)=0.0105\ 23;\ \alpha(L)=0.00149\ 20;\ \alpha(M)=0.00032\ 4$
		652.7 <i>3</i>	24.9 10	1452.36	(7/2)+	(E1)	2.09×10 ⁻³ 3	B(E1)(W.u.)=0.00128 <i>19</i> α (K)=0.001798 <i>25</i> ; α (L)=0.0002295 <i>32</i> ; α (M)=4.79×10 ⁻⁵ <i>7</i> α (N)=1.069×10 ⁻⁵ <i>15</i> ; α (O)=1.716×10 ⁻⁶ <i>24</i> ; α (P)=1.253×10 ⁻⁷ <i>18</i>
		1959.4 <i>4</i>	100.0 <i>18</i>	145.4434	7/2+	(E1)	8.35×10 ⁻⁴ 12	B(E1)(W.u.)=1.89×10 ⁻⁴ 28 α (K)=0.0002409 34; α (L)=2.97×10 ⁻⁵ 4; α (M)=6.17×10 ⁻⁶ 9 α (N)=1.379×10 ⁻⁶ 19; α (O)=2.232×10 ⁻⁷ 31; α (P)=1.701×10 ⁻⁸ 24; α (IPF)=0.000557 8
		2104.9 5	67.5 18	0.0	5/2+	(E1)	9.08×10 ⁻⁴ 13	B(E1)(W.u.)= 1.03×10^{-4} 15 α (K)= 0.0002152 30; α (L)= 2.64×10^{-5} 4; α (M)= 5.50×10^{-6} 8 α (N)= 1.230×10^{-6} 17; α (O)= 1.991×10^{-7} 28; α (P)= 1.520×10^{-8} 21; α (IPF)= 0.000660 9
2105.5	(7/2 ⁻ ,15/2 ⁻)	987.8 <i>3</i>	100	1117.67	11/2-	(E2)	2.18×10 ⁻³ 3	B(E2)(W.u.)=9×10 ¹ +11-5 α (K)=0.001863 26; α (L)=0.000253 4; α (M)=5.33×10 ⁻⁵ 7 α (N)=1.189×10 ⁻⁵ 17; α (O)=1.899×10 ⁻⁶ 27; α (P)=1 338×10 ⁻⁷ 19
2106.2	(5/2 ⁻)	1961 2106	100 <i>15</i> 347 <i>15</i>	145.4434 0.0	7/2 ⁺ 5/2 ⁺			E_{γ} : from $(\gamma, \gamma,)$. E_{γ} : from $(\gamma, \gamma,)$.
2108.20	15/2 ⁽⁺⁾	122.3 <i>3</i> 311.9 <i>4</i>	18.4 <i>20</i> 100 <i>4</i>	1986.08 1796.21	(13/2 ⁺) 15/2 ⁺	(E2+M1)	0.051 6	E'_{γ}, I_{γ} : from ($\alpha, 2n\gamma$). $\alpha(K)=0.042 \ 6; \ \alpha(L)=0.00676 \ 27; \ \alpha(M)=0.00144 \ 8$ $\alpha(N)=0.000320 \ 15; \ \alpha(O)=4.99\times10^{-5} \ 9; \ \alpha(P)=3.0\times10^{-6} \ 7$ Mult.: from ($n, n'\gamma$). E. L: from ($\alpha, 2n\gamma$)
		340.9 5	42.9 20	1767.36	13/2+	(E2+M1)	0.039 6	$E_{\gamma,1\gamma}$. from $(\alpha,2n\gamma)$. $E_{\gamma,1\gamma}$: from $(\alpha,2n\gamma)$. Mult.: from $(n,n'\gamma)$.
2126.10	$(11/2^+)$	272.28 22	68 <i>9</i>	1853.79	$(11/2^+)$	(E2+M1)	0.075 6	$\alpha(K)=0.062 \ 8; \ \alpha(L)=0.0104 \ 11; \ \alpha(M)=0.00223 \ 26 \ \alpha(N)=0.00049 \ 5; \ \alpha(O)=7.6\times10^{-5} \ 5; \ \alpha(P)=4.4\times10^{-6} \ 9$
		604.9 <i>3</i>	41 5	1520.89	9/2+	(E2+M1)	0.0087 18	α (K)=0.0074 <i>16</i> ; α (L)=0.00103 <i>16</i> ; α (M)=0.000216 <i>32</i> α (N)=4.8×10 ⁻⁵ <i>7</i> ; α (O)=7.7×10 ⁻⁶ <i>13</i> ; α (P)=5.4×10 ⁻⁷ <i>14</i>
		631.8 <i>3</i>	43 4	1493.98	11/2+	(E2+M1)	0.0078 17	α (K)=0.0066 <i>15</i> ; α (L)=0.00092 <i>15</i> ; α (M)=0.000193 <i>30</i> α (N)=4.3×10 ⁻⁵ <i>7</i> ; α (O)=6.9×10 ⁻⁶ <i>12</i> ; α (P)=4.9×10 ⁻⁷ <i>12</i>
		669	92	1457.36	9/2+	(E2+M1)	0.0068 14	α (K)=0.0058 <i>13</i> ; α (L)=0.00079 <i>13</i> ; α (M)=0.000167 <i>27</i> α (N)=3.7×10 ⁻⁵ 6; α (O)=5.9×10 ⁻⁶ <i>11</i> ; α (P)=4.2×10 ⁻⁷ <i>10</i> I _{γ} : this γ ray is not resolved by 2008Sc17 in (n,n' γ) due to a background line and the branching ratio relative to 632 γ was taken by the authors from 1994De56.

	Adopted Levels, Gammas (continued)													
						$\gamma(^{141}\text{Pr})$	(continued)							
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments						
2126.10	(11/2+)	1008.8 3	100 6	1117.67	11/2-	(E1)	8.75×10 ⁻⁴ 12	α (K)=0.000755 <i>11</i> ; α (L)=9.47×10 ⁻⁵ <i>13</i> ; α (M)=1.975×10 ⁻⁵ <i>28</i> α (N)=4.41×10 ⁻⁶ <i>6</i> ; α (O)=7.11×10 ⁻⁷ <i>10</i> ; α (P)=5.31×10 ⁻⁸ <i>7</i> B(E1)(W,u)<6.53×10 ⁻⁴						
		1981.4 5	32 4	145.4434	7/2+	(E2)	8.37×10 ⁻⁴ 12	$\alpha(K)=0.000478 7; \alpha(L)=6.06\times10^{-5} 8; \alpha(M)=1.266\times10^{-5} 18 \\ \alpha(N)=2.83\times10^{-6} 4; \alpha(O)=4.57\times10^{-7} 6; \alpha(P)=3.44\times10^{-8} 5; \\ \alpha(IPF)=0.000283 4 \\ B(F2)(Wu) > 0.39 $						
2135.51	(7/2 ⁻)	678.3 <i>3</i>	27.2 10	1457.36	9/2+	(E1)	1.93×10 ⁻³ 3	B(E2)(W.d.)<0.39 B(E1)(W.u.)=0.00048 +17-14 α (K)=0.001658 23; α (L)=0.0002113 30; α (M)=4.41×10 ⁻⁵ 6 α (N)=9.84×10 ⁻⁶ 14; α (O)=1.580×10 ⁻⁶ 22; α (P)=1.157×10 ⁻⁷ 16						
		682.9 4	5.0 10	1452.36	(7/2)+	(E1)	1.90×10 ⁻³ 3	B(E1)(W.u.)=8.6×10 ⁻⁵ +35-30 α (K)=0.001635 23; α (L)=0.0002083 29; α (M)=4.35×10 ⁻⁵ 6 α (N)=9.70×10 ⁻⁶ 14; α (O)=1.558×10 ⁻⁶ 22; α (P)=1.141×10 ⁻⁷ 16						
		1990.0 5	35.6 13	145.4434	7/2+	(E1)	8.51×10 ⁻⁴ 12	B(E1)(W.u.)= $2.5 \times 10^{-5} + 9 - 7$ α (K)= $0.0002351 \ 33; \ \alpha$ (L)= $2.89 \times 10^{-5} \ 4; \ \alpha$ (M)= $6.02 \times 10^{-6} \ 8$ α (N)= $1.345 \times 10^{-6} \ 19; \ \alpha$ (O)= $2.177 \times 10^{-7} \ 30;$ α (P)= $1.660 \times 10^{-8} \ 23; \ \alpha$ (IPE)= $0.000579 \ 8$						
		2135.5 5	100.0 17	0.0	5/2+	(E1)	9.24×10 ⁻⁴ 13	$B(E1)(W.u.) = 5.7 \times 10^{-5} + 20 - 16$ $\alpha(K) = 0.0002104 \ 29; \ \alpha(L) = 2.59 \times 10^{-5} \ 4; \ \alpha(M) = 5.38 \times 10^{-6} \ 8$ $\alpha(N) = 1.202 \times 10^{-6} \ 17; \ \alpha(O) = 1.946 \times 10^{-7} \ 27;$ $\alpha(P) = 1.486 \times 10^{-8} \ 21; \ \alpha(IPF) = 0.000681 \ 10$						
2154.5	$(1/2^+, 3/2, 5/2^+)$	855.2 ^{&} 2		1298.71	$\frac{1}{2^+}$									
2171.86	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	520.9 <i>3</i>	8.7 7	1650.85	$(9/2^+)$	(E1)	0.00343 5	B(E1)(W.u.)=0.00140 +27-23 α (K)=0.00295 4; α (L)=0.000379 5; α (M)=7.93×10 ⁻⁵ 11 α (N)=1.768×10 ⁻⁵ 25; α (O)=2.83×10 ⁻⁶ 4; α (P)=2.037×10 ⁻⁷ 29						
		2026.6 4	100.0 7	145.4434	7/2+	(E1)	8.69×10 ⁻⁴ 12	B(E1)(W.u.)=2.73×10 ⁻⁴ +47-41 α (K)=0.0002284 32; α (L)=2.81×10 ⁻⁵ 4; α (M)=5.85×10 ⁻⁶ 8 α (N)=1.307×10 ⁻⁶ 18; α (O)=2.114×10 ⁻⁷ 30; α (P)=1.613×10 ⁻⁸ 23; α (IPF)=0.000605 8						
2188.15	(3/2+)	736.0 <i>3</i>	61 <i>3</i>	1452.36	(7/2)+	(E2)	0.00423 6	B(E2)(W.u.)=58 +32-25 α (K)=0.00358 5; α (L)=0.000515 7; α (M)=0.0001089 15 α (N)=2.423×10 ⁻⁵ 34; α (O)=3.83×10 ⁻⁶ 5; α (P)=2.55×10 ⁻⁷ 4						

From ENSDF

L

	Adopted Levels, Gammas (continued)													
						$\gamma(^{141}\mathrm{Pr})$	(continued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.	α [@]	Comments						
2188.15	(3/2+)	751.9 3	47.9 22	1436.12	3/2+	(E2+M1)	0.0051 11	α (K)=0.0044 <i>10</i> ; α (L)=0.00059 <i>10</i> ; α (M)=0.000124 <i>21</i> α (N)=2.8×10 ⁻⁵ <i>5</i> ; α (O)=4.4×10 ⁻⁶ <i>8</i> ; α (P)=3.2×10 ⁻⁷ <i>8</i>						
		2042.5 5	100 3	145.4434	7/2+	(E2)	8.37×10 ⁻⁴ 12	B(E2)(W.u.)=0.58 +31-25 α (K)=0.000452 6; α (L)=5.72×10 ⁻⁵ 8; α (M)=1.195×10 ⁻⁵ 17 α (N)=2.67×10 ⁻⁶ 4; α (O)=4.32×10 ⁻⁷ 6; α (P)=3.26×10 ⁻⁸ 5; α (IPF)=0.000312 4						
		2188.0 6	33 <i>3</i>	0.0	5/2+	(E2+M1)	0.00090 6	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000433 \ 35; \ \alpha(\mathrm{L}) = 5.5 \times 10^{-5} \ 4; \ \alpha(\mathrm{M}) = 1.14 \times 10^{-5} \ 9 \\ &\alpha(\mathrm{N}) = 2.55 \times 10^{-6} \ 21; \ \alpha(\mathrm{O}) = 4.14 \times 10^{-7} \ 34; \ \alpha(\mathrm{P}) = 3.16 \times 10^{-8} \\ &29; \ \alpha(\mathrm{IPF}) = 0.000396 \ 15 \end{aligned}$						
2190.36	(1/2 ⁻)	897.6 2 2044.7 7	73	1292.69 145.4434	(5/2) ⁺ 7/2 ⁺	(E3)	1.10×10 ⁻³ 2	α (K)=0.000790 <i>11</i> ; α (L)=0.0001046 <i>15</i> ; α (M)=2.197×10 ⁻⁵ 31 α (N)=4.91×10 ⁻⁶ 7; α (O)=7.90×10 ⁻⁷ <i>11</i> ; α (P)=5.82×10 ⁻⁸ 8; α (IPF)=0.0001803 25						
		2190.8 5	100 3	0.0	5/2+	(M2)	1.36×10 ⁻³ 2	Additional information 3. $\alpha(N)=5.92\times10^{-6} 8; \alpha(O)=9.59\times10^{-7} 13; \alpha(P)=7.32\times10^{-8}$ $10; \alpha(IPF)=0.0002269 32$ $\alpha(K)=0.000974 14; \alpha(L)=0.0001262 18; \alpha(M)=2.64\times10^{-5} 4$						
2205.96	$(11/2^+)$	352.7 3	3.5 7	1853.79	$(11/2^+)$	(E2+M1)	0.036 5	Additional information 4. $\alpha(K)=0.030\ 5;\ \alpha(L)=0.00464\ 9;\ \alpha(M)=0.000988\ 14$ $\alpha(N)=0.000219\ 4;\ \alpha(Q)=3.44\times10^{-5}\ 14;\ \alpha(P)=2.2\times10^{-6}\ 5$						
		752.7 <i>5</i> 2060.6 <i>4</i>	100.0 7	1452.36 145.4434	(7/2) ⁺ 7/2 ⁺	(E2)	8.37×10 ⁻⁴ 12	B(E2)(W.u.)=1.97 +40-37 α (K)=0.000445 6; α (L)=5.63×10 ⁻⁵ 8; α (M)=1.175×10 ⁻⁵ 16 α (N)=2.63×10 ⁻⁶ 4; α (O)=4.25×10 ⁻⁷ 6; α (P)=3.20×10 ⁻⁸ 4; α (D)=-0.000221 4						
2228.84	$(5/2^+, 7/2^+)$	386.95 25	8.9 18	1842.14	$(7/2^{+})$	(E2+M1)	0.028 5	$\alpha(\text{IFF})=0.0005214$ $\alpha(\text{K})=0.0234; \alpha(\text{L})=0.0035218; \alpha(\text{M})=0.00074929$ $\alpha(\text{N})=0.0001668; \alpha(\text{O})=2.62\times10^{-5}19; \alpha(\text{P})=1.7\times10^{-6}4$						
		649.0 <i>3</i>	100 <i>36</i>	1580.05	5/2-	(E1)	2.11×10 ⁻³ 3	B(E1)(W.u.)=0.0006 + 9 - 4 $\alpha(K)=0.001820 \ 26; \ \alpha(L)=0.0002323 \ 33; \ \alpha(M)=4.85\times10^{-5} \ 7$ $\alpha(N)=1.082\times10^{-5} \ 15; \ \alpha(O)=1.737\times10^{-6} \ 24;$ $\alpha(P)=1.268\times10^{-7} \ 18$						
		776.62 25	8.0 16	1452.36	$(7/2)^+$	(E2+M1)	0.0047 10	$\alpha(N)=2.6\times10^{-5} 4; \ \alpha(O)=4.1\times10^{-6} 8; \ \alpha(P)=3.0\times10^{-7} 7$ $\alpha(K)=0.0040 9; \ \alpha(L)=0.00054 10; \ \alpha(M)=0.000115 20$						
		935.8 <i>3</i>	8.0 18	1292.69	(5/2)+	(E2+M1)	0.0031 6	α (K)=0.0026 5; α (L)=0.00035 6; α (M)=7.3×10 ⁻⁵ 13 α (N)=1.63×10 ⁻⁵ 28; α (O)=2.6×10 ⁻⁶ 5; α (P)=1.9×10 ⁻⁷ 4						
		2082.8 5	52 <i>3</i>	145.4434	7/2+	(E2+M1)	0.00090 6	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00048 \ 4; \ \alpha(\mathrm{L}) = 6.0 \times 10^{-5} \ 5; \ \alpha(\mathrm{M}) = 1.26 \times 10^{-5} \ 11 \\ &\alpha(\mathrm{N}) = 2.82 \times 10^{-6} \ 25; \ \alpha(\mathrm{O}) = 4.6 \times 10^{-7} \ 4; \ \alpha(\mathrm{P}) = 3.48 \times 10^{-8} \\ &34; \ \alpha(\mathrm{IPF}) = 0.000343 \ 13 \\ &\delta: \ -0.37 \ +11 - 12 \ \mathrm{or} \ -5 \ +2 - 5. \end{aligned}$						

Adopted Levels, Gammas (continued)													
) (continued)									
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult.	α [@]	Comments					
2228.84	(5/2+,7/2+)	2228.2 5	38.0 25	0.0	5/2+	(E2+M1)	0.00090 5	$\alpha(K)=0.000418 \ 32; \ \alpha(L)=5.3\times10^{-5} \ 4; \ \alpha(M)=1.10\times10^{-5} \ 9$ $\alpha(N)=2.46\times10^{-6} \ 19; \ \alpha(O)=3.99\times10^{-7} \ 32; \ \alpha(P)=3.04\times10^{-8}$ $27: \ \alpha(IPF)=0.000417 \ 16$					
2230.3 2243.15 2247.7	(3/2 ⁻ ,5/2 ⁻)	736.3 <i>3</i> 749.17 <i>10</i> 1120.9 <i>4</i>	100 100 12.5 <i>18</i>	1493.98 1493.98 1126.83	11/2 ⁺ 11/2 ⁺ 3/2 ⁺	D+(Q) (E1)	7.24×10 ⁻⁴ 10	E _y ,Mult.: from (p,2ny). B(E1)(W.u.)=1.35×10 ⁻⁴ 32 α (N)=3.62×10 ⁻⁶ 5; α (O)=5.83×10 ⁻⁷ 8; α (P)=4.38×10 ⁻⁸ 6; α (IPF)=4.66×10 ⁻⁶ 9					
		2247.6 5	100.0 18	0.0	5/2+	(E1)	9.80×10 ⁻⁴ 14	$\alpha(K)=0.000621 \ 9; \ \alpha(L)=7.77\times10^{-5} \ 11; \ \alpha(M)=1.620\times10^{-5} \ 23$ B(E1)(W.u.)=1.34×10 ⁻⁴ 27 $\alpha(K)=0.0001944 \ 27; \ \alpha(L)=2.386\times10^{-5} \ 33; \ \alpha(M)=4.96\times10^{-6}$ 7 (W. 1.100×10 ⁻⁶ 16; \alpha(Q) = 1.706×10 ⁻⁷ 25;					
2254.0 2264.49	+ (3/2 ⁺)	2254.0 <i>18</i> 684.8 <i>3</i>	100 12.0 22	0.0 1580.05	5/2 ⁺ 5/2 ⁻	(E1)	1.89×10 ⁻³ 3	$\begin{aligned} \alpha(N) &= 1.109 \times 10^{-10}, \ \alpha(O) &= 1.790 \times 10^{-223}, \\ \alpha(P) &= 1.373 \times 10^{-8} \ 19; \ \alpha(IPF) &= 0.000756 \ 11 \end{aligned}$ B(E1)(W.u.) &= 0.00025 + 17 - 10 $\alpha(K) &= 0.001625 \ 23; \ \alpha(L) &= 0.0002070 \ 29; \ \alpha(M) &= 4.32 \times 10^{-5} \ 6 \\ \alpha(N) &= 9.64 \times 10^{-6} \ 14; \ \alpha(O) &= 1.549 \times 10^{-6} \ 22; \ \alpha(P) &= 1.134 \times 10^{-7} \end{aligned}$					
		812.4 4	10 <i>3</i>	1452.36	(7/2)+	(E2)	0.00337 5	B(E2)(W.u.)=10 +7-5 α (N)=1.891×10 ⁻⁵ 27; α (O)=3.00×10 ⁻⁶ 4; α (P)=2.042×10 ⁻⁷ 29					
		828.1 <i>3</i>	18 4	1436.12	3/2+	(E2+M1)	0.0041 8	$\alpha(K)=0.00286 4; \alpha(L)=0.000402 6; \alpha(M)=8.49\times10^{-5} 12$ $\alpha(K)=0.0035 7; \alpha(L)=0.00047 8; \alpha(M)=9.8\times10^{-5} 17$ $\alpha(N)=2.2\times10^{-5} 4; \alpha(O)=3.5\times10^{-6} 6; \alpha(P)=2.6\times10^{-7} 6$					
		965.9 4	17 3	1298.71	1/2+	(E2+M1)	0.0028 6	$\alpha(N)=2.2\times10^{-5} \ 26; \ \alpha(O)=2.4\times10^{-6} \ 4; \ \alpha(P)=1.8\times10^{-7} \ 4$ $\alpha(K)=0.0024 \ 5; \ \alpha(L)=0.00032 \ 6; \ \alpha(M)=6.8\times10^{-5} \ 12$					
		2118.6 5	100 4	145.4434	7/2+	(E2)	8.39×10 ⁻⁴ 12	B(E2)(W.u.)=0.8 +5-3 α (K)=0.000423 6; α (L)=5.34×10 ⁻⁵ 7; α (M)=1.116×10 ⁻⁵ 16 α (N)=2.494×10 ⁻⁶ 35; α (O)=4.03×10 ⁻⁷ 6; α (P)=3.05×10 ⁻⁸ 4: α (IPF)=0.000349 5					
		2264.0 5	49 <i>3</i>	0.0	5/2+	(E2+M1)	0.00090 5	$\alpha(\text{M}) = 0.000405 \ 30; \ \alpha(\text{L}) = 5.1 \times 10^{-5} \ 4; \ \alpha(\text{M}) = 1.07 \times 10^{-5} \ 8 \\ \alpha(\text{N}) = 2.38 \times 10^{-6} \ 18; \ \alpha(\text{O}) = 3.86 \times 10^{-7} \ 30; \ \alpha(\text{P}) = 2.95 \times 10^{-8} \\ 25; \ \alpha(\text{IPF}) = 0.000435 \ 17 $					
2267.20	$(1/2^+)$	291.65 25	65	1975.26	$(3/2^+)$	(E2+M1)	0.061 6	$\alpha(K)=0.051\ 7;\ \alpha(L)=0.0083\ 6;\ \alpha(M)=0.00179\ 15$ $\alpha(N)=0.000396\ 30;\ \alpha(O)=6.15\times10^{-5}\ 26;\ \alpha(P)=3.6\times10^{-6}\ 8$					
		975.0 <i>3</i> 2267.1 <i>3</i>	100 5	1292.69 0.0	(5/2) ⁺ 5/2 ⁺	(E2)	8.54×10 ⁻⁴ 12	$\alpha(K)=0.000374\ 5;\ \alpha(L)=4.71\times10^{-5}\ 7;\ \alpha(M)=9.84\times10^{-6}\ 14$					

				A	Adopted	Levels, Gam	mas (continued)
						$\gamma(^{141}\text{Pr})$ (cor	ntinued)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments
								α (N)=2.200×10 ⁻⁶ 31; α (O)=3.56×10 ⁻⁷ 5; α (P)=2.70×10 ⁻⁸ 4; α (IPF)=0.000420 6 B(E2)(W.u.)<1.17
2270.1 2296.0 2302.6	$(5/2^+, 7/2^+, 9/2^+)$	2270 2296 1009.2 <i>4</i>	100 100	0.0 0.0 1292.69	$5/2^+$ $5/2^+$ $(5/2)^+$			
200210	(), ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2158.3 5	100	145.4434	7/2+	(E2+M1)	0.00090 6	$ \begin{aligned} &\alpha(\mathrm{N}) = 2.63 \times 10^{-6} \ 22; \ \alpha(\mathrm{O}) = 4.3 \times 10^{-7} \ 4; \\ &\alpha(\mathrm{P}) = 3.24 \times 10^{-8} \ 30; \ \alpha(\mathrm{IPF}) = 0.000381 \ 14 \\ &\alpha(\mathrm{K}) = 0.00045 \ 4; \ \alpha(\mathrm{L}) = 5.6 \times 10^{-5} \ 5; \ \alpha(\mathrm{M}) = 1.17 \times 10^{-5} \\ &10 \end{aligned} $
2315.65	(5/2,7/2)	1022.9 <i>3</i> 2169.9 <i>5</i> 2315 7 5	96 <i>3</i> 39.0 <i>1</i> 9	1292.69 145.4434	$(5/2)^+$ $7/2^+$ $5/2^+$	Q+D Q+D		δ: -0.16 + 31 - 23 or <-7.9 (n,n'γ). Mult.: (E2+M1) (n,n'γ) (2008Sc17). Mult.: (E2+M1) (n,n'γ) (2008Sc17).
2336.54	(15/2 ⁻)	816.03 25	80 <i>11</i>	1520.89	9/2 ⁺	(E3)	0.00759 11	$\alpha(K)=0.00625 \ 9; \ \alpha(L)=0.001058 \ 15; \ \alpha(M)=0.0002274$
		1218.3 <i>3</i>	100 11	1117.67	11/2-	(E2)	1.42×10 ⁻³ 2	$\alpha(N)=5.04\times10^{-7} ; \alpha(O)=7.86\times10^{-7} II; \alpha(P)=4.65\times10^{-7} 7 \alpha(K)=0.001209 I7; \alpha(L)=0.0001598 22; \alpha(M)=3.35\times10^{-5} 5$
								α (N)=7.48×10 ⁻⁶ 10; α (O)=1.201×10 ⁻⁶ 17; α (P)=8.70×10 ⁻⁸ 12; α (IPF)=8.22×10 ⁻⁶ 12 B(E2)(W.u.)<106.26
2345.87	(9/2 ⁺)	559.0 <i>3</i>	51 4	1786.47	(5/2+)	[E2]	0.00838 12	B(E2)(W.u.)= $1.4 \times 10^2 + 9 - 7$ α (K)= $0.00701 \ 10; \ \alpha$ (L)= $0.001082 \ 15;$ α (M)= $0.0002305 \ 32$ α (N)= $5.11 \times 10^{-5} \ 7; \ \alpha$ (O)= $7.99 \times 10^{-6} \ 11;$
								α (P)=4.92×10 ⁻⁷ 7 Mult.: (E2+M1) in (n,n' γ) 2008Sc17 but based on assigned spins it is rather Δ J=2 γ .
		851.76 23	66 4	1493.98	11/2+	(E2+M1)	0.0038 8	$\alpha(K)=0.00337; \alpha(L)=0.000448; \alpha(M)=9.1\times10^{-5}16$ $\alpha(N)=2.0\times10^{-5}4; \alpha(Q)=3.3\times10^{-6}6; \alpha(P)=2.4\times10^{-7}6$
		1052.6 <i>3</i>	90 <i>5</i>	1292.69	(5/2)+	(E2)	1.91×10 ⁻³ 3	$\begin{array}{l} a(N)=2.0\times10^{-4}, \ a(O)=3.5\times10^{-6}, \ a(I)=2.4\times10^{-6}, \$
		1229.8 <i>3</i>	37 7	1117.67	11/2-	(E1)	6.51×10 ⁻⁴ 9	$\alpha(P)=1.1/2\times 10^{-7} 10^{-6}$ B(E1)(W.u.)=5.9×10 ⁻⁵ +39–29 $\alpha(K)=0.000526$ 7; $\alpha(L)=6.56\times 10^{-5}$ 9;

	Adopted Levels, Gammas (continued)													
						$\gamma(^{141}\mathrm{Pr})$	(continued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α@	Comments						
2345.87	(9/2+)	2199.5 6	55 5	145.4434	7/2+	(E2+M1)	0.00090 5	$\begin{aligned} \alpha(M) &= 1.366 \times 10^{-5} \ 19 \\ \alpha(N) &= 3.05 \times 10^{-6} \ 4; \ \alpha(O) &= 4.93 \times 10^{-7} \ 7; \ \alpha(P) &= 3.71 \times 10^{-8} \ 5; \\ \alpha(IPF) &= 4.19 \times 10^{-5} \ 6 \\ \alpha(K) &= 0.000429 \ 34; \ \alpha(L) &= 5.4 \times 10^{-5} \ 4; \ \alpha(M) &= 1.13 \times 10^{-5} \ 9 \\ \alpha(N) &= 2.53 \times 10^{-6} \ 20; \ \alpha(O) &= 4.09 \times 10^{-7} \ 34; \ \alpha(P) &= 3.12 \times 10^{-8} \\ 28; \ \alpha(IPE) &= 0.000402 \ 15 \end{aligned}$						
		2345.1 6	100 6	0.0	5/2+	(E2)	8.66×10 ⁻⁴ 12	B(E2)(W.u.)=0.22 + 14 - 10						
								$\begin{aligned} &\alpha(\mathbf{K}) = 0.000352 \ 5; \ \alpha(\mathbf{L}) = 4.43 \times 10^{-5} \ 6; \ \alpha(\mathbf{M}) = 9.24 \times 10^{-6} \ 13 \\ &\alpha(\mathbf{N}) = 2.067 \times 10^{-6} \ 29; \ \alpha(\mathbf{O}) = 3.34 \times 10^{-7} \ 5; \ \alpha(\mathbf{P}) = 2.54 \times 10^{-8} \\ &4; \ \alpha(\mathbf{IPF}) = 0.000457 \ 6 \end{aligned}$						
2353.7	(5/2-)	2353.7 19	100	0.0	5/2+		1.54 10-3							
2362.85	(5/2-)	754.64 24	16.4 14	1608.26	(3/2)*	(EI)	1.54×10 ⁻⁵	B(E1)(W.u.)=0.00133 +37-29 α (K)=0.001330 <i>19</i> ; α (L)=0.0001688 24; α (M)=3.52×10 ⁻⁵ 5 α (N)=7.86×10 ⁻⁶ <i>11</i> ; α (O)=1.264×10 ⁻⁶ <i>18</i> ; α (P)=9.31×10 ⁻⁸ <i>13</i>						
		1064.4 ^{&} 4	15 <i>3</i>	1298.71	1/2+			Mult.: M2 γ based on $\Delta J^{\pi}_{(\text{levels})}$ gives B(M2)(W.u.)=1.8E3 +10-7 exceeding RUL=1.						
		1235.7 3	100 3	1126.83	3/2+	(E1)	6.48×10^{-4} 9	B(E1)(W.u.)=0.00185 +48-38						
								$\begin{aligned} &\alpha(\mathbf{K}) = 0.000522 \ 7; \ \alpha(\mathbf{L}) = 6.50 \times 10^{-5} \ 9; \ \alpha(\mathbf{M}) = 1.355 \times 10^{-5} \ 19 \\ &\alpha(\mathbf{N}) = 3.03 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) = 4.88 \times 10^{-7} \ 7; \ \alpha(\mathbf{P}) = 3.68 \times 10^{-8} \ 5; \\ &\alpha(\mathbf{IPF}) = 4.48 \times 10^{-5} \ 6 \end{aligned}$						
		2217.0 6	12.4 <i>14</i>	145.4434	7/2+	(E1)	9.65×10 ⁻⁴ 14	B(E1)(W.u.)=4.0×10 ⁻⁵ +11-9 α (K)=0.0001985 28; α (L)=2.437×10 ⁻⁵ 34; α (M)=5.07×10 ⁻⁶ 7 α (N)=1.133×10 ⁻⁶ 16; α (O)=1.835×10 ⁻⁷ 26;						
		2362.5 6	39.6 <i>19</i>	0.0	5/2+	(E1)	1.04×10 ⁻³ 2	$\alpha(P)=1.402\times10^{-8} \ 20; \ \alpha(IPF)=0.000736 \ 10$ B(E1)(W.u.)=1.05×10 ⁻⁴ +28-22 $\alpha(K)=0.0001801 \ 25; \ \alpha(L)=2.208\times10^{-5} \ 31;$ $\alpha(M)=4.59\times10^{-6} \ 6$ $\alpha(N)=1.027\times10^{-6} \ 14; \ \alpha(O)=1.662\times10^{-7} \ 23;$ $\alpha(P)=1.272\times10^{-8} \ 18; \ \alpha(IPF)=0.000831 \ 12$						
2364.8?		1237.9 ^{&} 2		1126.83	3/2+									
2382.2	(9/2 ⁻ ,11/2 ⁻)	1246.7 ^{&} 2 861.3 <i>3</i>	100.0 17	1117.67 1520.89	11/2 ⁻ 9/2 ⁺	(E1)	1.18×10 ⁻³ 2	B(E1)(W.u.)=0.0012 +7-5 α (K)=0.001022 <i>14</i> ; α (L)=0.0001290 <i>18</i> ; α (M)=2.69×10 ⁻⁵ <i>4</i> α (N)=6.01×10 ⁻⁶ <i>8</i> ; α (O)=9.67×10 ⁻⁷ <i>14</i> ; α (P)=7.17×10 ⁻⁸ <i>10</i>						

						$\gamma(^{141}\mathrm{Pr})$	(contir	uued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.	$\delta^{\#}$	$\alpha^{@}$	Comments
2382.2	(9/2-,11/2-)	1264.5 4	38.1 17	1117.67	11/2-	(E2+M1)	_	0.00158 26	$\alpha(K)=0.00135\ 22;\ \alpha(L)=0.000175\ 27;\ \alpha(M)=3.7\times10^{-5}$
									$\alpha(N)=8.2\times10^{-6} \ I3; \ \alpha(O)=1.32\times10^{-6} \ 21; \\ \alpha(P)=9.9\times10^{-8} \ I8; \ \alpha(IPF)=1.505\times10^{-5} \ 24$
2399.28?		1281.3 ^{&} 2	100	1117.67	11/2-				5
2403.13	(9/2 ⁺)	945.8 <i>3</i>	43.2 19	1457.36	9/2+	(E2+M1)		0.0030 6	$\alpha(K)=0.0026 5; \alpha(L)=0.00034 6; \alpha(M)=7.1\times10^{-5} 12 \alpha(N)=1.59\times10^{-5} 28; \alpha(O)=2.6\times10^{-6} 5; \alpha(P)=1.9\times10^{-7} 4$
		2257.5 5	24.7 17	145.4434	7/2+	(E2+M1)		0.00090 5	α (K)=0.000407 30; α (L)=5.1×10 ⁻⁵ 4; α (M)=1.07×10 ⁻⁵ 8
									$\alpha(N)=2.40\times10^{-6}$ 18; $\alpha(O)=3.88\times10^{-7}$ 30; $\alpha(P)=2.97\times10^{-8}$ 25; $\alpha(IPF)=0.000431$ 17 $\delta: -0.40+22-41$ or <-1.8 (n n' γ)
		2403.2 5	100.0 24	0.0	5/2+	(E2)		8.76×10 ⁻⁴ 12	B(E2)(W.u.)=0.20 + 14 - 10
									$\alpha(K)=0.0003375; \alpha(L)=4.24\times10^{-5}6; \alpha(M)=8.84\times10^{-6}12$
									$\alpha(N) = 1.976 \times 10^{-6} 28; \ \alpha(O) = 3.20 \times 10^{-7} 4;$
2419.9	$(9/2^+)$	925.9 <i>3</i>	39 4	1493.98	$11/2^{+}$	(E2+M1)		0.0031 6	$\alpha(P)=2.429\times10^{-6}34; \ \alpha(IPF)=0.000485 \ / \ \alpha(K)=0.0027 \ 5; \ \alpha(L)=0.00036 \ 6; \ \alpha(M)=7.5\times10^{-5} \ 13$
									α (N)=1.67×10 ⁻⁵ 29; α (O)=2.7×10 ⁻⁶ 5; α (P)=2.0×10 ⁻⁷
		2274.2 6	100 8	145.4434	7/2+	(E2+M1)		0.00090 5	$\alpha(K)=0.000401 \ 30; \ \alpha(L)=5.1\times10^{-5} \ 4;$
									$\alpha(M)=1.06\times10^{-5} 8$ $\alpha(N)=2.36\times10^{-6} 18$: $\alpha(O)=3.83\times10^{-7} 30$:
									$\alpha(P)=2.92\times10^{-8} 24; \ \alpha(PF)=0.000440 \ 17$
		2/10 0 6	60 13	0.0	5/2+	(F2)		8 70×10-4 12	δ : +0.4 +20-2 or +1.6 +8-13 (n,n' γ). B(F2)(Wu) =0.10 +7-5
		2419.9 0	09 15	0.0	5/2	(L2)		0.79×10 12	$\alpha(K)=0.0003335; \alpha(L)=4.18\times10^{-5}6;$
									$\alpha(M) = 8.73 \times 10^{-6} \ 12$
									$\alpha(N)=1.952\times10^{-6} 2/; \alpha(O)=3.16\times10^{-7} 4;$ $\alpha(P)=2.399\times10^{-8} 34; \alpha(IPE)=0.000493.7$
2453.1	$(3/2^{-}, 5/2^{-})$	1326.4 3	98	1126.83	$3/2^{+}$	(E1)		6.26×10 ⁻⁴ 9	B(E1)(W.u.)=0.00047 + 41-25
									$\alpha(K)=0.000460 \ 6; \ \alpha(L)=5.73\times 10^{-5} \ 8;$
									$\alpha(M) = 1.193 \times 10^{-5} \ 17$ $\alpha(N) = 2.67 \times 10^{-6} \ 4. \ \alpha(O) = 4.30 \times 10^{-7} \ 6.$
									$\alpha(P)=3.25\times10^{-8} 5; \alpha(PF)=9.30\times10^{-5} 13$
		2452.7 6	100 8	0.0	5/2+	(E1)		$1.08 \times 10^{-3} 2$	B(E1)(W.u.)=0.00083 + 14 - 15
									$\alpha(K)=0.0001701\ 24;\ \alpha(L)=2.084\times10^{-5}\ 29;$

 $^{141}_{59}\mathrm{Pr}_{82}\text{--}23$

From ENSDF

Adopted Levels, Gammas (continued)									
						$\gamma(^{141}\text{Pr})$ (co	ntinued)		
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.	$\delta^{\#}$	α [@]	Comments
2454.20	(15/2+)	449.91 22	64 5	2003.84	(11/2 ⁺)	(E2)		0.01508 21	$ \begin{array}{c} \alpha(M) = 4.33 \times 10^{-6} \ 6 \\ \alpha(N) = 9.69 \times 10^{-7} \ 14; \ \alpha(O) = 1.569 \times 10^{-7} \ 22; \\ \alpha(P) = 1.201 \times 10^{-8} \ 17; \ \alpha(IPF) = 0.000886 \ 12 \\ \alpha(K) = 0.01246 \ 18; \ \alpha(L) = 0.002070 \ 29; \\ \alpha(M) = 0.000443 \ 6 \\ \alpha(N) = 9.81 \times 10^{-5} \ 14; \ \alpha(O) = 1.515 \times 10^{-5} \ 21; \end{array} $
		687.32 <i>23</i>	100 5	1767.36	13/2+	(E2+M1)	-0.26 +14-15	0.00751 24	$\alpha(P)=8.58\times10^{-7} I2$ $\alpha(K)=0.00644 \ 21; \ \alpha(L)=0.000847 \ 23;$ $\alpha(M)=0.000178 \ 5$ $\alpha(N)=3.98\times10^{-5} I1; \ \alpha(O)=6.42\times10^{-6} I8;$
2461.79	(5/2+)	810.5 <i>3</i>	23.1 22	1650.85	(9/2+)	(E2)		0.00338 5	$\alpha(P)=4.82\times10^{-7} \ 17$ B(M1)(W.u.)<0.45; B(E2)(W.u.)<82.27 B(E2)(W.u.)=37 + 13 - 11 $\alpha(N)=1.902\times10^{-5} \ 27; \ \alpha(O)=3.02\times10^{-6} \ 4; \ \alpha(P)=2 \ 0.52\times10^{-7} \ 29$
		1026.2 4	21.3 20	1436.12	3/2+	(E2+M1)		0.0025 5	$\alpha(K) = 0.00287 \ 4; \ \alpha(L) = 0.000405 \ 6; \alpha(M) = 8.54 \times 10^{-5} \ 12 \alpha(K) = 0.0021 \ 4; \ \alpha(L) = 0.00028 \ 5; \alpha(M) = 5.9 \times 10^{-5} \ 10 $
		1335.0 4	24.7 20	1126.83	3/2+	(E2+M1)		0.00142 22	$\alpha(N)=1.31\times10^{-5} 22; \ \alpha(O)=2.1\times10^{-6} 4; \\ \alpha(P)=1.56\times10^{-7} 33 \\ \alpha(N)=7.2\times10^{-6} 11; \ \alpha(O)=1.17\times10^{-6} 18; \\ \alpha(P)=8.8\times10^{-8} 15; \ \alpha(IPF)=2.87\times10^{-5} 5 \\ \alpha(K)=0.00120 19; \ \alpha(L)=0.000155 23; \\ \alpha(D)=0.00120 10; \ \alpha(D)=0.000155 10; \\ \alpha(D)=0.00120 10; \ \alpha(D)=0.000155 10; \\ \alpha(D)=0.00120 10; \ \alpha(D)=0.000155 10; \\ \alpha(D)=0.00120 10; \ \alpha(D)=0.00155 10; \\ \alpha(D)=0.00120 10; \\alpha(D)=0.00155 10; \\ \alpha(D)=0.00120 10; \\alpha(D)=0.001$
		2462.2 6	100 3	0.0	5/2+	(E2+M1)		0.00093 5	$\begin{array}{l} \alpha(\mathrm{M}) = 3.2 \times 10^{-5} \ 5 \\ \alpha(\mathrm{K}) = 0.000343 \ 21; \ \alpha(\mathrm{L}) = 4.32 \times 10^{-5} \ 27; \\ \alpha(\mathrm{M}) = 9.0 \times 10^{-6} \ 6 \\ \alpha(\mathrm{N}) = 2.02 \times 10^{-6} \ 13; \ \alpha(\mathrm{O}) = 3.27 \times 10^{-7} \ 21; \end{array}$
2473.2?	(1/2 ⁻ ,9/2 ⁻)	368.16 <i>21</i>	100	2105.02	(5/2 ⁻)	(E2)		0.0270 4	$\alpha(P)=2.50\times10^{-8} \ 18; \ \alpha(IPF)=0.000534 \ 22$ $\alpha(K)=0.02194 \ 31; \ \alpha(L)=0.00396 \ 6; \alpha(M)=0.000853 \ 12$ $\alpha(N)=0.0001882 \ 27; \ \alpha(O)=2.87\times10^{-5} \ 4; $
2499.08? 2499.76	(5/2+,7/2+,9/2+)	1381.1 ^{&} 2 1046.5 <i>4</i>	100 19.6 <i>14</i>	1117.67 1452.36	11/2 ⁻ (7/2) ⁺	(E2+M1)		0.0024 4	$\alpha(P)=1.4/6\times10 \circ 21$ $\alpha(K)=0.0020 \ 4; \ \alpha(L)=0.00027 \ 5; \alpha(M)=5.6\times10^{-5} \ 9 \alpha(N)=1.26\times10^{-5} \ 21; \ \alpha(O)=2.0\times10^{-6} \ 4; \alpha(P)=1.50\times10^{-7} \ 31 \delta: +0.22 \ +47-22 \ or \ +2.4 \ +29-13 \ (n,n'\gamma).$

					Adopted	l Levels, Gar	nmas (continued)
						$\gamma(^{141}\text{Pr})$ (co	ntinued)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments
2499.76	(5/2+,7/2+,9/2+)	2354.8 3	100.0 14	145.4434	7/2+	(E2+M1)	0.00091 5	$\alpha(K)=0.000375\ 25;\ \alpha(L)=4.72\times10^{-5}\ 33;\alpha(M)=9.9\times10^{-6}\ 7\alpha(N)=2.20\times10^{-6}\ I6;\ \alpha(Q)=2.57\times10^{-7}\ 26;$
2520.15	(3/2+)	501.5 3	62 9	2018.12	(3/2+)	(E2+M1)	0.0140 28	$\begin{aligned} \alpha(N) &= 2.20 \times 10^{-7} I0; \ \alpha(O) &= 5.57 \times 10^{-7} 20; \\ \alpha(P) &= 2.73 \times 10^{-8} 21; \ \alpha(IPF) &= 0.000480 \ 19 \\ \delta: +0.06 \ 8 \ \text{or} + 4.1 + 16 - 11 \ (n,n'\gamma). \\ \alpha(K) &= 0.0118 \ 25; \ \alpha(L) &= 0.00169 \ 21; \ \alpha(M) &= 0.00036 \ 4 \\ \alpha(N) &= 8.0 \times 10^{-5} \ 9; \ \alpha(O) &= 1.27 \times 10^{-5} \ 17; \ \alpha(P) &= 8.6 \times 10^{-7} \\ 22 \end{aligned}$
		1085.0 4	73 11	1436.12	3/2+	(E2+M1)	0.0022 4	$\alpha(K)=0.00188 \ 35; \ \alpha(L)=0.00025 \ 4; \ \alpha(M)=5.2\times10^{-5} \ 9 \ \alpha(N)=1.16\times10^{-5} \ 19; \ \alpha(O)=1.86\times10^{-6} \ 32; \ \alpha(P)=1.38\times10^{-7} \ 28$
		1227.3 4	77 10	1292.69	(5/2)+	(E2+M1)	0.00168 28	α (K)=0.00144 25; α (L)=0.000187 29; α (M)=3.9×10 ⁻⁵ 6 α (N)=8.7×10 ⁻⁶ 14; α (O)=1.41×10 ⁻⁶ 23; α (P)=1.05×10 ⁻⁷ 20; α (IPF)=9.47×10 ⁻⁶ 15
		2374.6 7	100 10	145.4434	7/2+	(E2)	8.71×10 ⁻⁴ 12	B(E2)(W.u.)=0.22 +24-12 α (N)=2.020×10 ⁻⁶ 28; α (O)=3.27×10 ⁻⁷ 5; α (P)=2.481×10 ⁻⁸ 35; α (IPF)=0.000471 7 α (K)=0.000345 5; α (L)=4.33×10 ⁻⁵ 6; α (M)=9.03×10 ⁻⁶ 13
		2520.7 9	76 10	0.0	5/2+	(E2+M1)	0.00094 5	$\alpha(K)=0.000328 \ I9; \ \alpha(L)=4.12\times10^{-5} \ 24; \\ \alpha(M)=8.6\times10^{-6} \ 5 \\ \alpha(N)=1.92\times10^{-6} \ I2; \ \alpha(O)=3.12\times10^{-7} \ I9; \\ \alpha(P)=2 \ 39\times10^{-8} \ I6: \ \alpha(PF)=0 \ 000563 \ 24$
2563.9	(5/2 ⁻ ,7/2 ⁻)	2418.0 9	49 7	145.4434	7/2+	(E1)	1.07×10 ⁻³ 2	$\begin{array}{l} \text{B(E1)(W.u.)=1.06\times10^{-4}+22-20} \\ \alpha(\text{K)=0.0001738\ 24;\ }\alpha(\text{L})=2.130\times10^{-5}\ 30; \\ \alpha(\text{M})=4.43\times10^{-6}\ 6 \\ \alpha(\text{N})=9.90\times10^{-7}\ 14;\ \alpha(\text{O})=1.604\times10^{-7}\ 22; \\ \alpha(\text{N})=0.00010^{-8}\ 12^{-6}\ \alpha(\text{N})=0.000000^{-5}\ 12^{-6}\ \alpha(\text{N})=0.00000^{-6}\ \alpha(\text{N})=0.00000^{-6}\ \alpha(\text{N})=0.0000^{-6}\ \alpha(\text{N})=0.000^{-6}\ \alpha(\text{N})$
		2564.1 7	100 7	0.0	5/2+	(E1)	1.14×10 ⁻³ 2	$\begin{aligned} \alpha(\mathbf{F}) &= 1.228 \times 10^{-6} \ 17; \ \alpha(\mathbf{IFF}) &= 0.000865 \ 12 \\ \mathbf{B}(\mathbf{E1})(\mathbf{W}.\mathbf{u}.) &= 1.81 \times 10^{-4} \ + 32 - 29 \\ \alpha(\mathbf{K}) &= 0.0001591 \ 22; \ \alpha(\mathbf{L}) &= 1.947 \times 10^{-5} \ 27; \\ \alpha(\mathbf{M}) &= 4.05 \times 10^{-6} \ 6 \\ \alpha(\mathbf{N}) &= 9.05 \times 10^{-7} \ 13; \ \alpha(\mathbf{O}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 4.05 \times 10^{-8} \ 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.466 \times 10^{-7} \ 21; \\ \alpha(\mathbf{M}) &= 1.426 \times 10^{-8} \ \alpha(\mathbf{M}) &= 1.$
2580.71	(11/2 ⁺)	536.0 <i>3</i>	50 8	2045.11	9/2+	(E2+M1)	0.0118 24	$\alpha(P)=1.123\times10^{-6} \ 76; \ \alpha(PF)=0.000953 \ 73$ $\alpha(K)=0.0100 \ 22; \ \alpha(L)=0.00141 \ 19; \ \alpha(M)=0.00030 \ 4$ $\alpha(N)=6.7\times10^{-5} \ 9; \ \alpha(O)=1.06\times10^{-5} \ 16; \ \alpha(P)=7.3\times10^{-7} \ 18$
		726.7 3	33 8	1853.79	$(11/2^+)$	(E2+M1)	0.0055 12	$\alpha(K)=0.0047 \ 10; \ \alpha(L)=0.00064 \ 11; \ \alpha(M)=0.000135 \ 23$ $\alpha(N)=3.0\times10^{-5} \ 5; \ \alpha(O)=4.8\times10^{-6} \ 9; \ \alpha(P)=3.5\times10^{-7} \ 8$

 $^{141}_{59}\mathrm{Pr}_{82}\text{--}25$

					Adopt	ed Levels, G	ammas	(continued)	
						$\gamma(^{141}\mathrm{Pr})$ (continu	ued)	
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	$\delta^{\#}$	α [@]	Comments
2580.71	(11/2+)	1122.9 4	94 17	1457.36	9/2+	(E2+M1)		0.0020 4	$\alpha(K)=0.00174 \ 32; \ \alpha(L)=0.00023 \ 4; \ \alpha(M)=4.8\times10^{-5} \ 8$ $\alpha(N)=1.07\times10^{-5} \ 18; \ \alpha(O)=1.72\times10^{-6} \ 29; $ $\alpha(P)=1.28\times10^{-7} \ 25; \ \alpha(IPF)=8.12\times10^{-7} \ 16$
		2435.30 25	100 <i>19</i>	145.4434	7/2+	(E2)		8.82×10 ⁻⁴ 12	$\alpha(N)=1.929\times10^{-6}\ 27;\ \alpha(O)=3.12\times10^{-7}\ 4;\alpha(P)=2.372\times10^{-8}\ 33;\ \alpha(IPF)=0.000500\ 7\alpha(K)=0.000330\ 5;\ \alpha(L)=4.14\times10^{-5}\ 6;\ \alpha(M)=8.63\times10^{-6}\ 12D(F2)(W_{T})\ 25\ 26$
2583.0	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	2437.2 8	50.4 6	145.4434	7/2+	(E1)		1.08×10 ⁻³ 2	B(E2)(W.U.)<5.26 B(E1)(W.u.)=2.4×10 ⁻⁴ +8-6 α (K)=0.0001718 24; α (L)=2.104×10 ⁻⁵ 29; α (M)=4.38×10 ⁻⁶ 6 α (N)=9.78×10 ⁻⁷ 14; α (O)=1.584×10 ⁻⁷ 22; α (P)=1.213×10 ⁻⁸ 17; α (IPF)=0.000877 12
		2583.3 7	100.0 6	0.0	5/2+	(E1)		1.15×10 ⁻³ 2	B(E1)(W.u.)=0.00040 +13-9 α (K)=0.0001573 22; α (L)=1.925×10 ⁻⁵ 27; α (M)=4.00×10 ⁻⁶ 6 α (N)=8.95×10 ⁻⁷ 13; α (O)=1.450×10 ⁻⁷ 20; α (P)=1.111×10 ⁻⁸ 16; α (IPF)=0.000965 14
2586.1 2601.2	(5/2 ⁻ ,7/2 ⁻)	2586 2455.7 7	100 41 7	0.0 145.4434	5/2 ⁺ 7/2 ⁺	(E1)		1.08×10 ⁻³ 2	B(E1)(W.u.)= $8.3 \times 10^{-5} + 44 - 33$ α (K)=0.0001698 24; α (L)= 2.080×10^{-5} 29; α (M)= 4.33×10^{-6} 6 α (N)= 9.67×10^{-7} 14; α (O)= 1.566×10^{-7} 22; α (P)= 1.199×10^{-8} 17; α (IPF)= 0.000888 12
		2601.3 8	100 7	0.0	5/2+	(E1)		1.16×10 ⁻³ 2	B(E1)(W.u.)= $1.7 \times 10^{-4} + 9 - 6$ α (K)= $0.0001557 22; \alpha$ (L)= $1.905 \times 10^{-5} 27;$ α (M)= $3.96 \times 10^{-6} 6$ α (N)= $8.86 \times 10^{-7} 12; \alpha$ (O)= $1.434 \times 10^{-7} 20;$ α (P)= $1.099 \times 10^{-8} 15; \alpha$ (IPF)= $0.000976 14$
2603.7	(5/2 ⁻ ,7/2 ⁻)	2458.7 7	25 3	145.4434	7/2+	(E1)		1.09×10 ⁻³ 2	B(E1)(W.u.)= $1.2 \times 10^{-4} + 6 - 4$ α (K)= $0.0001695 24$; α (L)= $2.076 \times 10^{-5} 29$; α (M)= $4.32 \times 10^{-6} 6$ α (N)= $9.65 \times 10^{-7} 14$; α (O)= $1.563 \times 10^{-7} 22$; α (P)= $1.197 \times 10^{-8} 17$; α (IPF)= $0.000890 12$
		2603.1 8	100 3	0.0	5/2+	(E1)		1.16×10 ⁻³ 2	$B(E1)(W.u.)=0.00040 + 20-12 \alpha(K)=0.0001555 22; \alpha(L)=1.903\times10^{-5} 27; \alpha(M)=3.96\times10^{-6} 6$

					A	dopted Leve	ls, Gammas (con	tinued)
						$\gamma(^{141}$	Pr) (continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α@	Comments
								B(E1)(W.u.)=0.00040 +20-12 α (K)=0.0001555 22; α (L)=1.903×10 ⁻⁵ 27; α (M)=3.96×10 ⁻⁶ 6 α (N)=8.85×10 ⁻⁷ 12; α (O)=1.433×10 ⁻⁷ 20; α (P)=1.098×10 ⁻⁸ 15; α (IPF)=0.000977 14
2607.1	(1/2 ⁺)	2607.1 8	100	0.0	5/2+	(E2)	9.19×10 ⁻⁴ 13	B(E2)(W.u.)=0.9 +7-4 α (K)=0.000292 4; α (L)=3.66×10 ⁻⁵ 5; α (M)=7.62×10 ⁻⁶ 11 α (N)=1.705×10 ⁻⁶ 24; α (O)=2.76×10 ⁻⁷ 4; α (P)=2.102×10 ⁻⁸ 29: α (PE)=0.000580.8
2611.7	(9/2+)	1318.6 5	14.3 17	1292.69	(5/2)+	(E2)	1.23×10 ⁻³ 2	B(E2)(W.u.)=14.1 26 α (K)=0.001033 14; α (L)=0.0001353 19; α (M)=2.84×10 ⁻⁵ 4 α (N)=6.33×10 ⁻⁶ 9; α (O)=1.018×10 ⁻⁶ 14; α (P)=7.44×10 ⁻⁸ α (D)=-2.48×10 ⁻⁵ 4
		2612.4 7	100.0 <i>17</i>	0.0	5/2+	(E2)	9.20×10 ⁻⁴ 13	$B(E2)(W.u.)=3.2 5$ $\alpha(K)=0.000291 4; \ \alpha(L)=3.64\times10^{-5} 5; \ \alpha(M)=7.60\times10^{-6} 11$ $\alpha(N)=1.699\times10^{-6} 24; \ \alpha(O)=2.75\times10^{-7} 4; \ \alpha(P)=2.095\times10^{-8}$ $29; \ \alpha(IPF)=0.000583 8$
2623.2	(5/2 ⁺ ,7/2 ⁺)	1330.3 5	39 6	1292.69	(5/2)+	(E2+M1)	0.00143 22	$\alpha(K)=0.00121 \ 19; \ \alpha(L)=0.000156 \ 23; \ \alpha(M)=3.3\times10^{-5} \ 5 \\ \alpha(N)=7.3\times10^{-6} \ 11; \ \alpha(O)=1.18\times10^{-6} \ 18; \ \alpha(P)=8.8\times10^{-8} \ 15; \\ \alpha(IPF)=2.76\times10^{-5} \ 5 $
		2477.7 7	93 6	145.4434	7/2+	(E2+M1)	0.00093 5	α (K)=0.000339 20; α (L)=4.27×10 ⁻⁵ 26; α (M)=8.9×10 ⁻⁶ 6 α (N)=1.99×10 ⁻⁶ 13; α (O)=3.23×10 ⁻⁷ 21; α (P)=2.47×10 ⁻⁸ 17; α (IPF)=0.000541 23
		2623.8 8	100 7	0.0	5/2+	(E2+M1)	0.00096 4	α (K)=0.000304 <i>15</i> ; α (L)=3.81×10 ⁻⁵ <i>20</i> ; α (M)=7.9×10 ⁻⁶ <i>4</i> α (N)=1.78×10 ⁻⁶ <i>10</i> ; α (O)=2.88×10 ⁻⁷ <i>16</i> ; α (P)=2.21×10 ⁻⁸ <i>13</i> ; α (IPF)=0.000613 <i>26</i>
2626.7? 2646.4	(15/2 ⁻) (9/2 ⁺)	1509.1 <i>3</i> 2500.6 <i>7</i>	100 85 6	1117.67 145.4434	11/2 ⁻ 7/2 ⁺	E2+M1	0.00094 5	E _γ : from (α,2nγ). α (K)=0.000333 <i>19</i> ; α (L)=4.19×10 ⁻⁵ 25; α (M)=8.7×10 ⁻⁶ 5 α (N)=1.96×10 ⁻⁶ <i>12</i> ; α (O)=3.17×10 ⁻⁷ 20; α (P)=2.42×10 ⁻⁸ <i>16</i> : α (PE)=0.000553 23
		2646.9 8	100 6	0.0	5/2+	E2	9.28×10 ⁻⁴ 13	B(E2)(W.u.)=0.60 +15-13 α (K)=0.000284 4; α (L)=3.56×10 ⁻⁵ 5; α (M)=7.42×10 ⁻⁶ 10 α (N)=1.659×10 ⁻⁶ 23; α (O)=2.69×10 ⁻⁷ 4; α (P)=2.047×10 ⁻⁸ 29: α (IPE)=0.000599 8
2659.6	(11/2 ⁺)	2514.1 8	100	145.4434	7/2+	(E2)	8.98×10 ⁻⁴ 13	$\alpha(K) = 0.000311 4; \ \alpha(L) = 3.90 \times 10^{-5} 5; \ \alpha(M) = 8.14 \times 10^{-6} 11$ $\alpha(N) = 1.821 \times 10^{-6} 26; \ \alpha(O) = 2.95 \times 10^{-7} 4; \ \alpha(P) = 2.242 \times 10^{-8}$ $31; \ \alpha(IPF) = 0.000537 8$ B(E2)(W,u) < 0.83

I

					<u> </u>	$(^{141}\mathrm{Pr})$ (cont	inued)	
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments
2669.02	(9/2 ⁻ ,11/2 ⁻ ,13/2 ⁻)	1175.2 3	20 3	1493.98	11/2+	(E1)	6.78×10 ⁻⁴ 9	B(E1)(W.u.)=0.00048 +26-17 α (N)=3.32×10 ⁻⁶ 5; α (O)=5.35×10 ⁻⁷ 7; α (P)=4.02×10 ⁻⁸ 6; α (IPF)=1.797×10 ⁻⁵ 27 α (K)=0.000570 8; α (L)=7.12×10 ⁻⁵ 10; α (M)=1.484×10 ⁻⁵ 21
		1216.4 4	34 5	1452.36	$(7/2)^+$			Mult.: (E3) from 2008Sc17 in $(n,n'\gamma)$ greatly exceeds BUIL limits and is not adopted here
		1551.3 4	100 5	1117.67	11/2-	(E2+M1)	0.00111 <i>14</i>	$\alpha(K)=0.00087 \ 12; \ \alpha(L)=0.000112 \ 15; \\ \alpha(M)=2.34\times10^{-5} \ 30 \\ \alpha(N)=5.2\times10^{-6} \ 7; \ \alpha(O)=8.5\times10^{-7} \ 11; \ \alpha(P)=6.4\times10^{-8} \\ 10; \ \alpha(IPF)=9.71\times10^{-5} \ 24 \\ \delta_{1-0} \ \alpha(IPF)=9.71\times10^$
2682.99	$(5/2^+)$	870.9 4	25 3	1812.37	$(9/2^+)$			Mult.: (E2+M1) from $(n,n'\gamma)$ but (E2) based on ΔJ from level scheme
		1246.1 5	13.7 24	1436.12	3/2+	(E2+M1)	0.00163 27	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00139\ 23;\ \alpha(\mathrm{L}) = 0.000180\ 28;\ \alpha(\mathrm{M}) = 3.8 \times 10^{-5} \\ 6 \\ \alpha(\mathrm{N}) = 8.4 \times 10^{-6}\ 13;\ \alpha(\mathrm{O}) = 1.36 \times 10^{-6}\ 22; \\ \alpha(\mathrm{N}) = 1.02 \times 10^{-7}\ 10.5 \times 10^{-5}\ 20.5 \end{array}$
		1556.3 4	100 4	1126.83	3/2+	(E2+M1)	0.00111 14	$\alpha(P)=1.02\times10^{-7} P; \ \alpha(PP)=1.217\times10^{-5} 20$ $\alpha(K)=0.00087 I2; \ \alpha(L)=0.000111 I4; \alpha(M)=2.32\times10^{-5} 30$ $\alpha(N)=5.2\times10^{-6} 7; \ \alpha(O)=8.4\times10^{-7} II; \ \alpha(P)=6.3\times10^{-8}$ $P: \ \alpha(PP)=9.90\times10^{-5} 25$
		2537.5 11	10.0 22	145.4434	7/2+	(E2+M1)	0.00095 5	$\alpha(K) = 0.000324 \ I8; \ \alpha(L) = 4.07 \times 10^{-5} \ 24; \alpha(M) = 8.5 \times 10^{-6} \ 5 \alpha(N) = 1.90 \times 10^{-6} \ I1; \ \alpha(O) = 3.08 \times 10^{-7} \ I9; \alpha(P) = 2.36 \times 10^{-8} \ I5; \ \alpha(IPF) = 0.000571 \ 24$
		2683.2 8	55 5	0.0	5/2+	(E2+M1)	0.00098 4	$\alpha(K) = 0.000291 \ 14; \ \alpha(L) = 3.65 \times 10^{-5} \ 18; \alpha(M) = 7.6 \times 10^{-6} \ 4 \alpha(N) = 1.70 \times 10^{-6} \ 9; \ \alpha(O) = 2.76 \times 10^{-7} \ 14; \alpha(P) = 2.11 \times 10^{-8} \ 12; \ \alpha(IPF) = 0.000642 \ 28$
2692.0	-	2692	100	0.0	5/2+		,	
2707.9	(15/2 ⁻)	1590.2 4	100	1117.67	11/2-	(E2)	9.46×10 ⁻⁴ 13	B(E2)(W.u.)=32 +73-21 α (K)=0.000719 10; α (L)=9.27×10 ⁻⁵ 13; α (M)=1.939×10 ⁻⁵ 27 α (N)=4.33×10 ⁻⁶ 6; α (O)=6.98×10 ⁻⁷ 10; α (P)=5.18×10 ⁻⁸ 7; α (IPF)=0.0001099 15
2710.1	$(3/2^+)$	1411.3 3	82 16	1298.71	1/2+	(E2+M1)	0.00129 19	α (N)=6.4×10 ⁻⁶ 9; α (O)=1.04×10 ⁻⁶ 15; α (P)=7.8×10 ⁻⁸ 13; α (IPF)=4.92×10 ⁻⁵ 10

					A	dopted Leve	els, Gammas (cor	atinued)					
	γ ⁽¹⁴¹ Pr) (continued)												
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.	α [@]	Comments					
2710.1	(3/2+)	1583.3 4	100 16	1126.83	3/2+	(E2+M1)	0.00108 13	$\begin{aligned} &\alpha(\text{K}) = 0.00106 \ 16; \ \alpha(\text{L}) = 0.000137 \ 20; \ \alpha(\text{M}) = 2.9 \times 10^{-5} \ 4 \\ &\alpha(\text{K}) = 0.00084 \ 11; \ \alpha(\text{L}) = 0.000107 \ 14; \ \alpha(\text{M}) = 2.24 \times 10^{-5} \ 29 \\ &\alpha(\text{N}) = 5.0 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 8.1 \times 10^{-7} \ 11; \ \alpha(\text{P}) = 6.1 \times 10^{-8} \ 9; \\ &\alpha(\text{IPF}) = 0.0001096 \ 28 \end{aligned}$					
2718.5	(9/2,11/2)	1197.5 4	100 5	1520.89	$9/2^+$								
2722.4	(3/2+)	1271.6 5	47 4 30 20	1452.36	$(7/2)^+$	(E2)	1.31×10 ⁻³ 2	B(E2)(W.u.)=13 +10-7 α (K)=0.001109 16; α (L)=0.0001460 20; α (M)=3.06×10 ⁻⁵ 4 α (N)=6.83×10 ⁻⁶ 10; α (O)=1.097×10 ⁻⁶ 15; α (P)=7.99×10 ⁻⁸ 11; α (IPF)=1.610×10 ⁻⁵ 24					
		1422.4 6	20 20	1298.71	1/2+	(E2+M1)	0.00127 19	$\alpha(\mathbf{K}) = 0.00105 \ I6; \ \alpha(\mathbf{L}) = 0.000135 \ I9; \ \alpha(\mathbf{M}) = 2.8 \times 10^{-5} \ 4$ $\alpha(\mathbf{N}) = 6.3 \times 10^{-6} \ 9; \ \alpha(\mathbf{O}) = 1.02 \times 10^{-6} \ I5; \ \alpha(\mathbf{P}) = 7.7 \times 10^{-8} \ I3;$ $\alpha(\mathbf{IPF}) = 5.26 \times 10^{-5} \ II$					
		2576.0 9	50 20	145.4434	7/2+	(E2)	9.12×10 ⁻⁴ 13	B(E2)(W.u.)=0.65 +31-29 α (K)=0.000298 4; α (L)=3.74×10 ⁻⁵ 5; α (M)=7.79×10 ⁻⁶ 11 α (N)=1.742×10 ⁻⁶ 24; α (O)=2.82×10 ⁻⁷ 4; α (P)=2.147×10 ⁻⁸ 30; α (PE)=0.000566 8					
		2721.5 8	100 20	0.0	5/2+	(E2+M1)	0.00099 4	$\alpha(\text{IP})=0.000500000000000000000000000000000000$					
2731.4	(9/2+)	877.5 4	66	1853.79	$(11/2^+)$	E2+M1	0.0036 7	$\alpha(K)=0.000285 I3, \alpha(L)=3.53\times10^{-17}, \alpha(M)=7.4\times10^{-4}$ $\alpha(K)=0.0030 6; \alpha(L)=0.00041 7; \alpha(M)=8.5\times10^{-5} I5$ $\alpha(N)=1.90\times10^{-5} 33; \alpha(O)=3.1\times10^{-6} 6; \alpha(P)=2.2\times10^{-7} 5$					
		1278.7 5	44 20	1452.36	(7/2)+	E2+M1	0.00155 25	$\alpha(K) = 0.00131 \ 22; \ \alpha(L) = 0.000170 \ 26; \ \alpha(M) = 3.6 \times 10^{-5} \ 5$ $\alpha(N) = 8.0 \times 10^{-6} \ 12; \ \alpha(O) = 1.29 \times 10^{-6} \ 20; \ \alpha(P) = 9.6 \times 10^{-8} \ 17;$ $\alpha(IPF) = 1.741 \times 10^{-5} \ 29$					
		2586.6 8	100 20	145.4434	7/2+	E2+M1	0.00096 4	$\alpha(\mathbf{K}) = 0.000312 \ I6; \ \alpha(\mathbf{L}) = 3.92 \times 10^{-5} \ 22; \ \alpha(\mathbf{M}) = 8.2 \times 10^{-6} \ 5 \\ \alpha(\mathbf{N}) = 1.83 \times 10^{-6} \ I0; \ \alpha(\mathbf{O}) = 2.96 \times 10^{-7} \ I7; \ \alpha(\mathbf{P}) = 2.27 \times 10^{-8} \ I4; \\ \alpha(\mathbf{IPF}) = 0.000595 \ 25 \\ \delta_{1} = 0.04 + I6 - I4 \ \text{or} + 7 + 57 - 4 \ (\mathbf{p}, \mathbf{p}'_{2}))$					
		2732.1 8	50 20	0.0	5/2+	E2	9.49×10 ⁻⁴ 13	B(E2)(W.u.)=0.39 +20-17 α (N)=1.567×10 ⁻⁶ 22; α (O)=2.54×10 ⁻⁷ 4; α (P)=1.936×10 ⁻⁸ 27; α (IPF)=0.000638 9					
2739.7	(1/2 ⁻ ,9/2 ⁻)	1159.6 <i>3</i>	100	1580.05	5/2-	E2	1.56×10 ⁻³ 2	$\alpha(\mathbf{K})=0.000269 \ 4; \ \alpha(\mathbf{L})=5.36\times10^{-5} \ 5; \ \alpha(\mathbf{M})=7.01\times10^{-6} \ 10$ $\alpha(\mathbf{K})=0.001335 \ 19; \ \alpha(\mathbf{L})=0.0001777 \ 25; \ \alpha(\mathbf{M})=3.73\times10^{-5} \ 5$ $\alpha(\mathbf{N})=8.32\times10^{-6} \ 12; \ \alpha(\mathbf{O})=1.334\times10^{-6} \ 19; \ \alpha(\mathbf{P})=9.61\times10^{-8} \ 13; \ \alpha(\mathbf{IPF})=2.43\times10^{-6} \ 4$					
2749.58 2777.5	(9/2)	963.1 <i>1</i> 923.8 <i>4</i>	100 20 <i>3</i>	1786.47 1853.79	(5/2 ⁺) (11/2 ⁺)			B(E2)(W.u.)<71.15 E _{γ} : from (p,2n γ).					

					Adopted	Levels, Gan	nmas (continued))				
$\gamma(^{141}\text{Pr})$ (continued)												
E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$\alpha^{@}$	Comments				
2777.5	(9/2)	2631.9 8	100 3	145.4434	7/2+	D+Q		δ : +0.06 +10-9 or +4.1 +29-12 (n,n' γ).				
2782.4	$(5/2^+, 7/2^+)$	2637.4 8	100 5	145.4434	7/2+	(E2+M1)	0.00097 4	$\alpha(K) = 0.000301 \ 15; \ \alpha(L) = 3.77 \times 10^{-5} \ 20; \alpha(M) = 7.9 \times 10^{-6} \ 4 \alpha(N) = 1.76 \times 10^{-6} \ 9; \ \alpha(O) = 2.85 \times 10^{-7} \ 16; 0.000 \ 10^{-8} \ 10^{-6} \ 10^{-8} \ 10^{-7} \$				
		2781.8 9	52 5	0.0	5/2+	(E2+M1)	0.00100 4	$\alpha(P)=2.19\times10^{-6} I3; \ \alpha(IPF)=0.000620 \ 27$ $\alpha(K)=0.000271 \ 11; \ \alpha(L)=3.40\times10^{-5} \ 15; \ \alpha(M)=7.09\times10^{-6} \ 32$ $\alpha(N)=1.50\times10^{-6} \ 7; \ \alpha(O)=2.57\times10^{-7} \ 12; \ \alpha(D)=1.50\times10^{-6} \ 7; \ \alpha(O)=2.57\times10^{-7} \ 12; \ \alpha(D)=1.50\times10^{-6} \ 7; \ \alpha(D)=1.50\times10^{-6} \ 7; \ \alpha(D)=2.57\times10^{-7} \ 12; \ \alpha(D)=1.50\times10^{-6} \ 7; \ \alpha(D)=1.50\times10^{-6} \ 12; \ \alpha(D)=1.50\times10^{-6} \ 1$				
2782.7	(13/2+)	576.93 25	49 22	2205.96	(11/2+)	(E2+M1)	0.0098 20	$\begin{array}{l} \alpha(N)=1.59\times10^{-7}, \ \alpha(O)=2.57\times10^{-12}, \\ \alpha(P)=1.97\times10^{-8} \ 10; \ \alpha(IPF)=0.000689 \ 30 \\ \alpha(K)=0.0083 \ 18; \ \alpha(L)=0.00116 \ 17; \ \alpha(M)=0.000245 \ 35 \\ \alpha(N)=5.5\times10^{-5} \ 8; \ \alpha(O)=8.7\times10^{-6} \ 14; \ \alpha(P)=6.1\times10^{-7} \\ 15 \end{array}$				
		1261.1 5	100 22	1520.89	9/2+	(E2)	1.33×10 ⁻³ 2	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001128 \ 16; \ \alpha(\mathrm{L}) = 0.0001486 \ 21; \\ &\alpha(\mathrm{M}) = 3.12 \times 10^{-5} \ 4 \\ &\alpha(\mathrm{N}) = 6.95 \times 10^{-6} \ 10; \ \alpha(\mathrm{O}) = 1.117 \times 10^{-6} \ 16; \\ &\alpha(\mathrm{P}) = 8.12 \times 10^{-8} \ 11; \ \alpha(\mathrm{IPF}) = 1.441 \times 10^{-5} \ 22 \\ &\mathrm{B(E2)(W.u.)} < 65.31 \end{aligned}$				
2786.2	(0.184)	2786	100	0.0	5/2+			an <u>an an a</u>				
2801.77	(9/2+)	1151.2 5	100 8	1650.85	(9/2+)	(E2+M1)	0.00193 34	$\alpha(K)=0.00165 \ 30; \ \alpha(L)=0.000216 \ 35; \ \alpha(M)=4.5\times10^{-5} \ 7$ $\alpha(N)=1.01\times10^{-5} \ 16; \ \alpha(O)=1.63\times10^{-6} \ 27; $ $\alpha(P)=1.21\times10^{-7} \ 24; \ \alpha(IPF)=1.94\times10^{-6} \ 4$				
		2656.0 4	92 8	145.4434	7/2+	(E2+M1)	0.00097 4	$\alpha(\mathbf{K}) = 0.000297 \ 14; \ \alpha(\mathbf{L}) = 3.72 \times 10^{-5} \ 19; \alpha(\mathbf{M}) = 7.8 \times 10^{-6} \ 4 \alpha(\mathbf{N}) = 1.74 \times 10^{-6} \ 9; \ \alpha(\mathbf{O}) = 2.81 \times 10^{-7} \ 15; \alpha(\mathbf{P}) = 2 \ 16 \times 10^{-8} \ 12; \ \alpha(\mathbf{PE}) = 0.000629 \ 27$				
		2801.8 3	78 8	0.0	5/2+	(E2)	9.67×10 ⁻⁴ 14	$B(E2)(W.u.)=0.18 + 14-9 \alpha(K)=0.000258 4; \alpha(L)=3.21\times10^{-5} 5; \alpha(M)=6.70\times10^{-6} 9$				
								$\alpha(N)=1.498\times10^{-6}\ 21;\ \alpha(O)=2.426\times10^{-7}\ 34;$ $\alpha(P)=1.853\times10^{-8}\ 26;\ \alpha(DF)=0.000669, 9$				
2807.18	(3/2 ⁺ ,5/2,7/2 ⁺)	491.4 <i>3</i> 2662.0 <i>4</i> 2807.13 22	17 <i>17</i> 96 21 100 21	2315.65 145.4434 0.0	(5/2,7/2) 7/2 ⁺ 5/2 ⁺			<i>a</i> (1)-1.053×10 20, <i>a</i> (111)-0.000009 9				
2810.70	$(1/2^+)$	1201.1 5	85 <i>13</i>	1608.26	$(3/2)^+$	(E2+M1)	0.00176 30	$\alpha(K)=0.00150\ 26;\ \alpha(L)=0.000196\ 31;\ \alpha(M)=4.1\times10^{-5}\ 6$ $\alpha(N)=9.2\times10^{-6}\ 15;\ \alpha(O)=1.48\times10^{-6}\ 24;$ $\alpha(P)=1\ 10\times10^{-7}\ 21;\ \alpha(PE)=6\ 16\times10^{-6}\ 11$				
		2810.95 <i>23</i>	100 13	0.0	5/2+	(E2)	9.70×10 ⁻⁴ 14	$\alpha(K) = 0.10 \times 10^{-21}, \alpha(K) = 0.10 \times 10^{-11}$ $\alpha(K) = 0.000256 \ 4; \ \alpha(L) = 3.20 \times 10^{-5} \ 4; \ \alpha(M) = 6.66 \times 10^{-6}$ g $\alpha(K) = 1.490 \times 10^{-6} \ 21; \ \alpha(O) = 2.412 \times 10^{-7} \ 34;$				

	Adopted Levels, Gammas (continued)												
						$\gamma(^{141})$	Pr) (continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments					
2814.0	(1/2 ⁻)	1233.1 4	85 <i>13</i>	1580.05	5/2-	(E2)	1.39×10 ⁻³ 2	$\alpha(P)=1.842\times10^{-8}\ 26;\ \alpha(IPF)=0.000673\ 9$ B(E2)(W.u.)<0.59 B(E2)(W.u.)=9×10 ¹ +12-5 $\alpha(N)=7.29\times10^{-6}\ 10;\ \alpha(O)=1.170\times10^{-6}\ 16;\ \alpha(P)=8.49\times10^{-8}\ 12;$ $\alpha(IPF)=1.022\times10^{-5}\ 15$					
		1687.7 <i>3</i>	100 13	1126.83	3/2+	(E1)	7.09×10 ⁻⁴ 10	$\alpha(\mathbf{K}) = 0.001180 \ 17; \ \alpha(\mathbf{L}) = 0.0001558 \ 22; \ \alpha(\mathbf{M}) = 3.27 \times 10^{-5} \ 5$ B(E1)(W.u.)=0.0012 +15-6 $\alpha(\mathbf{K}) = 0.000307 \ 4; \ \alpha(\mathbf{L}) = 3.79 \times 10^{-5} \ 5; \ \alpha(\mathbf{M}) = 7.89 \times 10^{-6} \ 11$ $\alpha(\mathbf{N}) = 1.762 \times 10^{-6} \ 25; \ \alpha(\mathbf{O}) = 2.85 \times 10^{-7} \ 4; \ \alpha(\mathbf{P}) = 2.165 \times 10^{-8} \ 30;$					
2837.5	(5/2 ⁻ ,7/2 ⁻)	2692.0 9	100 5	145.4434	7/2+	(E1)	1.20×10 ⁻³ 2	α (IPF)=0.000355 5 B(E1)(W.u.)=0.00040 +24-14 α (K)=0.0001479 21; α (L)=1.809×10 ⁻⁵ 25; α (M)=3.76×10 ⁻⁶ 5 α (N)=8.41×10 ⁻⁷ 12; α (O)=1.362×10 ⁻⁷ 19; α (P)=1.045×10 ⁻⁸					
		2837.5 11	33 5	0.0	5/2+	(E1)	1.27×10 ⁻³ 2	15; α (IPF)=0.001030 14 B(E1)(W.u.)=1.1×10 ⁻⁴ +7-4 α (K)=0.0001369 19; α (L)=1.672×10 ⁻⁵ 23; α (M)=3.48×10 ⁻⁶ 5 α (N)=7.77×10 ⁻⁷ 11; α (O)=1.259×10 ⁻⁷ 18; α (P)=9.66×10 ⁻⁹ 14;					
2839.7	(9/2 ⁻)	2694.2 <i>4</i>	100	145.4434	7/2+	(E1)	1.20×10 ⁻³ 2	$\alpha(\text{IPF})=0.001111\ 16$ B(E1)(W.u.)=0.00023 +16-10 $\alpha(\text{K})=0.0001478\ 21;\ \alpha(\text{L})=1.807\times10^{-5}\ 25;\ \alpha(\text{M})=3.76\times10^{-6}\ 5$ $\alpha(\text{N})=8.40\times10^{-7}\ 12;\ \alpha(\text{O})=1.361\times10^{-7}\ 19;\ \alpha(\text{P})=1.043\times10^{-8}$					
2844.7	(3/2 ⁻)	1186.8 <i>5</i>	50 <i>30</i>	1657.07	1/2+	(E1)	6.71×10 ⁻⁴ 9	15; α (IPF)=0.001032 14 B(E1)(W.u.)=0.0008 +15-6 α (K)=0.000561 8; α (L)=7.00×10 ⁻⁵ 10; α (M)=1.458×10 ⁻⁵ 20 α (N)=3.26×10 ⁻⁶ 5; α (O)=5.25×10 ⁻⁷ 7; α (P)=3.95×10 ⁻⁸ 6;					
		1546.6 <i>6</i>	50 <i>30</i>	1298.71	1/2+	(E1)	6.59×10 ⁻⁴ 9	$\alpha(\text{IPF})=2.24\times10^{-5} \ 4$ B(E1)(W.u.)=0.0004 +7-3 $\alpha(\text{K})=0.000354 \ 5; \ \alpha(\text{L})=4.39\times10^{-5} \ 6; \ \alpha(\text{M})=9.14\times10^{-6} \ 13$ $\alpha(\text{N})=2.042\times10^{-6} \ 29; \ \alpha(\text{O})=3.30\times10^{-7} \ 5; \ \alpha(\text{P})=2.501\times10^{-8} \ 35;$					
		2846.2 11	100 40	0.0	5/2+	(E1)	1.27×10 ⁻³ 2	α (IPF)=0.0002488 35 B(E1)(W.u.)=0.00012 +19-8 α (K)=0.0001362 19; α (L)=1.665×10 ⁻⁵ 23; α (M)=3.46×10 ⁻⁶ 5 α (N)=7.74×10 ⁻⁷ 11; α (O)=1.253×10 ⁻⁷ 18; α (P)=9.62×10 ⁻⁹ 13; α (IPE)=0.001116 16					
2847.5	(9/2+)	1005.0 4	100 11	1842.14	(7/2 ⁺)	(E2+M1)	0.0026 5	$\alpha(\text{K}) = 0.0022 \ 4; \ \alpha(\text{L}) = 0.00029 \ 5; \ \alpha(\text{M}) = 6.2 \times 10^{-5} \ 11$ $\alpha(\text{N}) = 1.38 \times 10^{-5} \ 24; \ \alpha(\text{O}) = 2.2 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.64 \times 10^{-7} \ 35$ $\delta: \ \pm 0.20 \ \pm 43 = 23 \ \text{or} \ \pm 2.5 \ \pm 45 = 15 \ (\text{n} \ \text{n}' \alpha)$					
		1354.0 5	50 8	1493.98	11/2+	(E2+M1)	0.00139 21	$\alpha(K)=0.00116\ 18;\ \alpha(L)=0.000150\ 22;\ \alpha(M)=3.1\times10^{-5}\ 5$					

			<u>d)</u>					
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult.	α [@]	Comments
2847.5	(9/2 ⁺)	1389.9 6	42.8	1457.36	9/2+	(E2+M1)	0.00132 19	$\alpha(N)=7.0\times10^{-6} \ 10; \ \alpha(O)=1.13\times10^{-6} \ 17; \ \alpha(P)=8.5\times10^{-8}$ 15; \alpha(IPF)=3.33×10^{-5} \ 6 \alpha(K)=0.00110 \ 17; \ \alpha(L)=0.000142 \ 20; \ \alpha(M)=3.0\times10^{-5} \ 4
						, ,		α (N)=6.6×10 ⁻⁶ <i>10</i> ; α (O)=1.07×10 ⁻⁶ <i>16</i> ; α (P)=8.0×10 ⁻⁸ <i>13</i> ; α (IPF)=4.30×10 ⁻⁵ 8
		2702.8 12	33 6	145.4434	7/2+	(E2+M1)	0.00098 4	α (K)=0.000287 <i>13</i> ; α (L)=3.60×10 ⁻⁵ <i>18</i> ; α (M)=7.5×10 ⁻⁶ 4
		2848.4 11	53 17	0.0	5/2+	(E2)	9.80×10 ⁻⁴ 14	$\begin{aligned} &\alpha(\mathrm{N}) = 1.68 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 2.72 \times 10^{-7} \ 14; \\ &\alpha(\mathrm{P}) = 2.08 \times 10^{-8} \ 11; \ \alpha(\mathrm{IPF}) = 0.000651 \ 28 \\ &\alpha(\mathrm{K}) = 0.0002503 \ 35; \ \alpha(\mathrm{L}) = 3.12 \times 10^{-5} \ 4; \\ &\alpha(\mathrm{M}) = 6.51 \times 10^{-6} \ 9 \\ &\alpha(\mathrm{N}) = 1.455 \times 10^{-6} \ 20; \ \alpha(\mathrm{O}) = 2.356 \times 10^{-7} \ 33; \end{aligned}$
								α (P)=1.800×10 ⁻⁸ 25; α (IPF)=0.000690 10 B(E2)(W.u.)<0.19
2863.4		1570.9 6	100 30	1292.69	$(5/2)^+$			
2881.6	$(7/2^+)$	1028.0 <i>5</i>	49 30 92 42	145.4434 1853.79	$(11/2^+)$			Mult.: (E2+M1) from $(n,n'\gamma)$ but (E2) based on ΔJ from level scheme.
		1424.5 8	100 50	1457.36	9/2+	(E2+M1)	0.00127 18	$\alpha(N)=6.3\times10^{-6} \; 9; \; \alpha(O)=1.02\times10^{-6} \; 15; \; \alpha(P)=7.6\times10^{-8}$ 12; $\alpha(IPF)=5.33\times10^{-5} \; 11$ $\alpha(K)=0.00104 \; 16; \; \alpha(L)=0.000134 \; 19; \; \alpha(M)=2.8\times10^{-5} \; 4$
		1428.5 6	81 <i>19</i>	1452.36	(7/2)+	(E2+M1)	0.00126 18	$\alpha(\mathbf{K})=0.00104 \ 15; \ \alpha(\mathbf{L})=0.000134 \ 19; \ \alpha(\mathbf{M})=2.8\times10^{-5} \ 4$ $\alpha(\mathbf{N})=6.3\times10^{-6} \ 9; \ \alpha(\mathbf{O})=1.01\times10^{-6} \ 15; \ \alpha(\mathbf{P})=7.6\times10^{-8}$ $12: \ \alpha(\mathbf{PE})=5.45\times10^{-5} \ 11$
		2737.0 16	31 <i>15</i>	145.4434	7/2+	(E2+M1)	0.00099 4	$\alpha(\mathbf{K}) = 0.00280 \ 12; \ \alpha(\mathbf{L}) = 3.51 \times 10^{-5} \ 17; \alpha(\mathbf{M}) = 7.32 \times 10^{-6} \ 35 \alpha(\mathbf{L}) = 3.51 \times 10^{-7} \ 12; \alpha(\mathbf{M}) = 7.32 \times 10^{-6} \ 35 \ 10^{-7} \ 12; $
								$\alpha(N)=1.64\times10^{-8}$ s; $\alpha(O)=2.63\times10^{-1}$ 15; $\alpha(P)=2.03\times10^{-8}$ 11; $\alpha(IPF)=0.000667$ 29
		2882.3 11	81 15	0.0	5/2+	(E2+M1)	0.00103 4	$\alpha(K)=0.000254 \ 9; \ \alpha(L)=3.17\times10^{-5} \ 13; \ \alpha(M)=6.62\times10^{-6}$ 27
								$\alpha(N)=1.48\times10^{-6} 6; \alpha(O)=2.40\times10^{-7} 10;$ $\alpha(P)=1.84\times10^{-8} 8; \alpha(IPF)=0.000736 33$
2887.47	(7/2 ⁺ ,9/2,11/2 ⁺)	1075.2 <i>5</i> 1367.0 <i>4</i> 1392.8 <i>5</i>	86 21 100 21 82 21	1812.37 1520.89 1493.98	(9/2 ⁺) 9/2 ⁺ 11/2 ⁺			a(1)=1.0 1/10 0, a(11)=0.000150 55
		1769.6 6	61 36	1117.67	$11/2^{-}$			
2896.8	(11/2 ⁺)	2742.5 17 1439.0 8 2752.0 10	32 11 41 14 100 14	145.4434 1457.36 145.4434	7/2+ 9/2+ 7/2+			

					Ad	opted Levels	, Gammas (con	tinued)
						$\gamma(^{141}P)$	r) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult.	α [@]	Comments
2927.25	19/2-	858.42 15	100	2068.84	17/2+	E1	1.19×10 ⁻³ 2	$\alpha(K)=0.001029 \ 14; \ \alpha(L)=0.0001298 \ 18; \ \alpha(M)=2.71\times10^{-5} \ 4$ $\alpha(N)=6.05\times10^{-6} \ 8; \ \alpha(O)=9.73\times10^{-7} \ 14; \ \alpha(P)=7.21\times10^{-8} \ 10$ Example from (p. 200)
2929.2	(5/2+,7/2+)	1636.0 <i>5</i>	100 10	1292.69	(5/2)+	(E2+M1)	0.00104 12	$\alpha(K)=0.00078 \ 10; \ \alpha(L)=0.000100 \ 12; \ \alpha(M)=2.09\times10^{-5} \ 26 \ \alpha(N)=4.7\times10^{-6} \ 6; \ \alpha(O)=7.6\times10^{-7} \ 10; \ \alpha(P)=5.7\times10^{-8} \ 8; \ \alpha(IPF)=0.000131 \ 4$
		2785.2 11	85 10	145.4434	7/2+	(E2+M1)	0.00100 4	$\alpha(K)=0.000271 \ II; \ \alpha(L)=3.39\times10^{-5} \ I5; \ \alpha(M)=7.07\times10^{-6} \ 32$ $\alpha(N)=1.58\times10^{-6} \ 7; \ \alpha(O)=2.57\times10^{-7} \ I2; \ \alpha(P)=1.97\times10^{-8}$ $I0; \ \alpha(PE)=0.000690, \ 30$
		2930.3 12	23 6	0.0	5/2+	(E2+M1)	0.00104 4	$\alpha(K)=0.000246 \ 8; \ \alpha(L)=3.07\times10^{-5} \ 11; \ \alpha(M)=6.41\times10^{-6} \ 24 \\ \alpha(N)=1.43\times10^{-6} \ 5; \ \alpha(O)=2.33\times10^{-7} \ 9; \ \alpha(P)=1.78\times10^{-8} \ 8; \\ \alpha(IPF)=0.000758 \ 34$
2941.4		1484.2 <i>10</i> 1488.6 8 2796.4 <i>14</i> 2941.7 <i>14</i>	66 <i>41</i> 66 <i>41</i> 81 25 100 25	1457.36 1452.36 145.4434 0.0	9/2 ⁺ (7/2) ⁺ 7/2 ⁺ 5/2 ⁺			
2950.5	$(1/2^+)$	1514.4 6 2950.1 17 2054	100 22 49 22	1436.12 0.0	$3/2^+$ $5/2^+$ $5/2^+$			E i from (i.i.i.)
2954.0 2962.65	19/2+	854.6 <i>3</i>	77 4	2108.20	$\frac{5/2}{15/2^{(+)}}$	(E2)	0.00300 4	$\alpha(N)=1.671\times10^{-5}\ 23;\ \alpha(O)=2.66\times10^{-6}\ 4;\ \alpha(P)=1.826\times10^{-7}$ 26
								α (K)=0.00255 4; α (L)=0.000356 5; α (M)=7.50×10 ⁻⁵ 11 E _{γ} ,I _{γ} ,Mult.: from (α ,2n γ).
		893.7 <i>3</i>	100 4	2068.84	17/2+	M1+E2	0.0034 7	α (K)=0.0029 6; α (L)=0.00039 7; α (M)=8.1×10 ⁻⁵ 14 α (N)=1.82×10 ⁻⁵ 32; α (O)=2.9×10 ⁻⁶ 5; α (P)=2.1×10 ⁻⁷ 5 E_{γ} , I_{γ} ,Mult.: from (α ,2n γ).
2002 5	(5/0- 7/0-)	1166.1 7	43 6	1796.21	$15/2^+$	Q		$E_{\gamma},I_{\gamma},Mult.:$ from (⁷ Li,4n γ).
2983.5	(5/2 ,1/2)	2839.07 2983.05	22 13 100 13	145.44 <i>3</i> 4 0.0	$5/2^+$			
3000.75	$(11/2^+)$	956.0 <i>4</i> 1479.5 <i>5</i> 2855 2 <i>3</i>	60 22 40 22 100 78	2045.11 1520.89 145.4434	9/2 ⁺ 9/2 ⁺ 7/2 ⁺			
3016.3	(5/2 ⁻)	941.0 5 1887.9 <i>13</i> 2871.0 <i>19</i> 3015.9 <i>15</i>	97 24 50 18 38 15 100 18	2075.50 1126.83 145.4434 0.0	$(5/2^+)$ $3/2^+$ $7/2^+$ $5/2^+$			
3016.88	21/2+	89.7 7	<4	2927.25	19/2-	E1	0.338 9	α (K)=0.287 7; α (L)=0.0410 <i>11</i> ; α (M)=0.00859 23 α (N)=0.00189 5; α (O)=0.000290 8; α (P)=1.68×10 ⁻⁵ 4 E_{γ},I_{γ} : from (⁷ Li,4n γ)). E_{γ},I_{γ} ,Mult.: from (⁷ Li,4n γ).

 $^{141}_{59}\mathrm{Pr}_{82}\text{--}33$

From ENSDF

 $^{141}_{59}\mathrm{Pr}_{82}\text{--}33$

					Ado	pted Levels	s, Gamm	as (continued)	
				nued)					
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	$\delta^{\#}$	α [@]	Comments
3016.88	21/2+	948.0 <i>3</i>	100.0 20	2068.84	17/2+	E2		2.39×10 ⁻³ 3	$ \begin{array}{c} \alpha(\mathrm{K}) = 0.002034 \ 29; \ \alpha(\mathrm{L}) = 0.000279 \ 4; \ \alpha(\mathrm{M}) = 5.87 \times 10^{-5} \ 8 \\ \alpha(\mathrm{N}) = 1.307 \times 10^{-5} \ 18; \ \alpha(\mathrm{O}) = 2.085 \times 10^{-6} \ 29; \\ \alpha(\mathrm{P}) = 1.460 \times 10^{-7} \ 20 \end{array} $
3018.95	21/2-	91.7 <i>1</i>	100	2927.25	19/2-	M1+E2	1.7 6	2.58 24	E _γ ,I _γ : from ('Li,4nγ)). B(M1)(W.u.)=0.010 +15-5 α (K)=1.516 35; α (L)=0.83 17; α (M)=0.19 4 α (N)=0.040 8; α (O)=0.0057 11; α (P)=8.7×10 ⁻⁵ 6 E _γ ,Mult.,δ: from α (exp) (⁷ Li,4nγ). B(E2)(W.u.)=2.1×10 ³ +17-9 exceeds RUL=300.
3034.3	$(1/2^+)$	1734.9 7 1742.5 8	100 <i>33</i> 67 <i>33</i>	1298.71 1292.69	$1/2^+$ (5/2) ⁺				
3045.5 3057.0	(11/2+,9/2)	1524.6 7 2900.2 <i>12</i> 3057	100 <i>19</i> 85 <i>19</i> 100	1520.89 145.4434 0.0	9/2+ 7/2+ 5/2+				
3064.5	(7/2 ⁺ ,9/2 ⁻)	960.5 6 1209.9 6 2018 4 12	84 <i>55</i> 79 <i>32</i>	2105.02 1853.79	$(5/2^{-})$ $(11/2^{+})$ $7/2^{+}$				
3075.5	$(3/2^+)$	1623.1 <i>11</i> 3075.4 <i>15</i>	100 21 100 38 92 38	1452.36 0.0	$(7/2)^+$ $5/2^+$				
3080.0		1094.0 <i>5</i> 2934.1 <i>17</i>	100 <i>43</i> 89 <i>43</i>	1986.08 145.4434	$(13/2^+)$ $7/2^+$				
3083.5	(5/2)	2938 3083.4 <i>14</i>	56 100	145.4434 0.0	$7/2^+$ $5/2^+$				
3114.8		2969.2 19	100 25	145.4434	$7/2^+$				
3128.6		764.6 5 1838.1 7	49 23 53 33 98 25	2362.85 1292.69	$(5/2^{-})$ $(5/2)^{+}$ $(5/2)^{+}$				
3155.5		1180.3 7 1497.7 14 1574.7 13 3011.2 12 3155 14	100 23 88 30 42 30 73 37 100 21	0.0 1975.26 1657.07 1580.05 145.4434	$3/2^+$ $(3/2^+)$ $1/2^+$ $5/2^-$ $7/2^+$ $5/2^+$				
3203.3	_	3058 3203	16 100 <i>26</i>	145.4434 0.0	$7/2^+$ $5/2^+$				
3206.0		3206 3255	100	0.0	$5/2^+$ $5/2^+$				
3272.3		3127	100	145.4434	5/2 7/2+				
3294.0		3272 3294	43 7 100	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	5/2+ 5/2+				
3324.3		3179	100	145.4434	7/2+				

From ENSDF

 $^{141}_{59}\mathrm{Pr}_{82}\text{--}34$

$\gamma(^{141}Pr)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	α@	Comments
3324.3 3338.0 3346.0 3348.8 3370.0	(7/2)	3324 3338 3346 3203 3349 3370	58 11 100 100 100 37 8 100	$ \begin{array}{r} 0.0\\ 0.0\\ 0.0\\ 145.4434\\ 0.0\\ 0.0\\ 0.0 \end{array} $	5/2 ⁺ 5/2 ⁺ 5/2 ⁺ 7/2 ⁺ 5/2 ⁺ 5/2 ⁺			
3376.0 3396.7	21/2-	3376 434.1 <i>3</i>	100 100 100	0.0 2962.65	5/2 ⁺ 19/2 ⁺	E1	0.00522 7	$\alpha(K)=0.00449$ 6; $\alpha(L)=0.000583$ 8; $\alpha(M)=0.0001218$ 17
								$\alpha(N)=2.71\times10^{-5}$ 4; $\alpha(O)=4.33\times10^{-6}$ 6; $\alpha(P)=3.08\times10^{-7}$ 4 E _{γ} ,Mult.: from (α ,2n γ).
3417.3		3272 3417	100 35 7	145.4434 0.0	7/2 ⁺ 5/2 ⁺			
3427.3		3282 3427	41 100 23	145.4434 0.0	7/2+ 5/2+			
3449.0	00/0-	3449	100	0.0	5/2+			
3470.9	23/2	74.2 <i>1</i> 454.0 <i>3</i>	8.3 <i>14</i> 100.0 <i>7</i>	3396.7 3016.88	21/2 21/2 ⁺	E1	0.00470 7	$\alpha_{\rm X}({\rm A}_{2},{\rm A}_{2})$. $\alpha_{\rm X}({\rm A}_{2})=0.00404$ 6; $\alpha_{\rm X}({\rm A}_{2})=0.000523$ 7; $\alpha_{\rm X}({\rm A}_{2})=0.0001094$ 15 $\alpha_{\rm X}({\rm A}_{2})=2.437\times10^{-5}$ 34; $\alpha_{\rm X}({\rm O}_{2})=3.89\times10^{-6}$ 5; $\alpha_{\rm X}({\rm P}_{2})=2.78\times10^{-7}$ 4 Ev. L. Mult.: from ($\alpha_{\rm X}({\rm A}_{2})$).
3494.8		3349 3495 2508	100 85 22	145.4434 0.0	$7/2^+$ $5/2^+$ $5/2^+$			_,,,,,
3526.6	23/2-	507.6 3	73.8	3018.95	21/2-	M1+E2	0.0135 27	$\alpha(K)=0.0115\ 25;\ \alpha(L)=0.00164\ 20;\ \alpha(M)=0.00035\ 4$ $\alpha(N)=7.7\times10^{-5}\ 9;\ \alpha(O)=1.23\times10^{-5}\ 17;\ \alpha(P)=8.4\times10^{-7}\ 21$ $E_{\gamma},I_{\gamma}:\ from\ (\alpha,2n\gamma).$ Mult.: D+Q, $\Delta J=1\ \gamma$ in (⁷ Li,4n γ) (ADO ratio, 2015Li21); E2, $\Delta J=2\ \gamma$ in $(\alpha,2n\gamma)\ (\alpha(K)exp,\ \alpha(L)exp,\ angular\ correlations).\ \Delta J=1\ \gamma$ sustained by D+Q, $\Delta J=1\ 509.7\gamma$ decaying this level and ultimately by $(\alpha,2n\gamma)$ data with very mixed M1+E2 α , which is adopted here
		509.7 <i>3</i>	100 50	3016.88	21/2+	D+Q		E _{γ} , I _{γ} : from (α , 2n γ). Mult : D+O, Δ I=1 γ in (⁷ Li 4n γ).
3581.0 3585.5	23/2+	3581 568.6 <i>3</i>	100 100 <i>11</i>	0.0 3016.88	5/2 ⁺ 21/2 ⁺	M1	0.01224 17	B(M1)(W.u.)=0.00046 +38-16 α (K)=0.01049 15; α (L)=0.001382 19; α (M)=0.000290 4 α (N)=6.49×10 ⁻⁵ 9; α (O)=1.048×10 ⁻⁵ 15; α (P)=7.89×10 ⁻⁷ 11 E _{γ} ,I _{γ} : from (⁷ Li,4n γ).
		622.7 7	30 4	2962.65	19/2+	[E2]	0.00636 9	Mult.: from $(\alpha, 2n\gamma)$. $\alpha(K)=0.00534 \ 8; \ \alpha(L)=0.000801 \ 11; \ \alpha(M)=0.0001700 \ 24$ $\alpha(N)=3.77\times10^{-5} \ 5; \ \alpha(O)=5.93\times10^{-6} \ 8; \ \alpha(P)=3.78\times10^{-7} \ 5$ B(E2)(W.u.)=0.16 +14-6 $E_{\gamma},I_{\gamma},Mult.: \ Q \ from (^7Li,4n\gamma).$

$\gamma(^{141}\text{Pr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.	α [@]	Comments
3643.1		3643	100	0.0	$5/2^{+}$			E_{γ} : from (γ, γ) .
3643.3		116.7 3	100	3526.6	$23/2^{-}$			$E_{\gamma}I_{\gamma}$: from $(\alpha, 2n\gamma)$.
3659.1		3659	100	0.0	$5/2^{+}$			
3706.1		3706	100	0.0	$5/2^{+}$			
3761.1		3761	100	0.0	$5/2^{+}$			
3773.1		3773	100	0.0	5/2+			
3791.1		3791	100	0.0	5/2+			
3812.1		3812	100	0.0	5/2+			
3829.1		3829	100	0.0	5/2+			
38/9.3		3/34	82	145.4434	5/2+ 5/2+			
3013-1		3013	100 40	0.0	5/2 5/2+			
4187.8	$(23/2^{+})$	1170.9.5	100	3016.88	$\frac{3}{2}$	D+O		E. I. Mult: from $(^{7}$ I i $4ny$)
4296 7	$(25/2^{-})$ $25/2^{(-)}$	711.2.7	100 12	3585 5	$23/2^+$	D(+0)		E_{γ} , E
122017	23/2	825.7 7	50.0 95	3470.9	$23/2^{-}$	D(1Q)		E_{γ} , E
		1277.8 7	88 14	3018.95	$\frac{21}{2^{-1}}$	0		$E_{\rm rel}$ L _v . Mult.: from $(^7{\rm Li}.4n\gamma)$.
4370.5	$27/2^{-}$	843.9 3	27.3 18	3526.6	$\frac{23}{2}$	Õ		Mult.: from $(^{7}Li.4n\gamma)$.
	,_	899.6.3	100.0 36	3470.9	$\frac{23}{2}$	E2	0.00268 4	$\alpha(K) = 0.002278 \ 32; \ \alpha(L) = 0.000315 \ 4; \ \alpha(M) = 6.63 \times 10^{-5} \ 9$
					- 1			$\alpha(N)=1.478\times10^{-5} 21; \alpha(O)=2.354\times10^{-6} 33; \alpha(P)=1.633\times10^{-7} 23$
4381.7	$25/2^{(-)}$	796.2 7	64 13	3585.5	$23/2^{+}$			E_{γ}, I_{γ} : from (⁷ Li, 4n γ).
	,	910.7 7	54 10	3470.9	$23/2^{-}$			E_{γ}, I_{γ} : from (⁷ Li, 4n γ).
		1362.8 7	100 18	3018.95	$21/2^{-}$	Q		$E_{\gamma}, I_{\gamma}, Mult.$: from (⁷ Li, 4n γ).
4430.3	$25/2^{(-)}$	903.8 5	100 13	3526.6	$23/2^{-}$	(D+Q)		$E_{\gamma}, I_{\gamma}, Mult.$: from (⁷ Li, 4n γ).
		959.3 7	58 8	3470.9	$23/2^{-}$	D+Q		$E_{\gamma}, I_{\gamma}, Mult.$: from (⁷ Li, 4n γ).
4546.9		116.6 5	100	4430.3	$25/2^{(-)}$			E_{γ}, I_{γ} : from (⁷ Li, 4n γ).
								Transition replaced from 3643.5 in $(\alpha, 2n\gamma)$.
4592.0	$(25/2^{-})$	1121.0 7	100 14	3470.9	$23/2^{-}$			E_{γ}, I_{γ} : from (⁷ Li, 4n γ).
	()	1573.1 7	86 17	3018.95	$21/2^{-}$	(Q)		$E_{\gamma}, I_{\gamma}, Mult.:$ from ('Li, 4n γ).
4740.6	$27/2^{(-)}$	370.2 3	17.4 48	4370.5	27/2-			
		1269.6 3	100 10	3470.9	23/2-	Q		Mult.: from $(^{\prime}\text{Li},4n\gamma)$.
4826.8	$25/2^{(+)}$	1241.3 5	100 15	3585.5	23/2+	D+Q		$E_{\gamma}, I_{\gamma}, Mult.:$ from ('Li,4n γ).
		1355.8 7	51 9	3470.9	23/2-			E_{γ}, I_{γ} : from ('Li,4n γ).
4907.0		1380.4 7	100	3526.6	23/2-			E_{γ}, I_{γ} : from (⁷ Li, 4n γ).
4988.5	$29/2^{(-)}$	247.8 7	88 16	4740.6	$27/2^{(-)}$			E_{γ}, I_{γ} : from (⁷ Li, 4n γ).
		606.9 7	84 12	4381.7	$25/2^{(-)}$			E_{γ}, I_{γ} : from ('Li, 4n γ).
		618.1 7	100 14	4370.5	27/2-	D+Q		$E_{\gamma}, I_{\gamma}, Mult.:$ from ('Li, 4n γ).
		691.9 7	61 9	4296.7	$25/2^{(-)}$			E_{γ}, I_{γ} : from ('Li,4n γ).
5039.9	29/2	299.2 5	100 16	4740.6	$27/2^{(-)}$	D+Q		$E_{\gamma}, I_{\gamma}, Mult.:$ from ('Li,4n γ).
		669.5 5	100 12	4370.5	$27/2^{-}$	D+Q		$E_{\gamma}, I_{\gamma}, Mult.:$ from ('Li,4n γ).

$\gamma(^{141}Pr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
5103.6	31/2 ⁽⁻⁾	362.9 7	90 13	4740.6	27/2 ⁽⁻⁾	Q	$E_{\gamma},I_{\gamma},Mult.:$ from (⁷ Li,4n γ).
	<i>(</i>)	733.2 7	100 13	4370.5	27/2-	Q	E_{γ} , I_{γ} , Mult.: from (⁷ Li, 4n γ).
5142.5	$27/2^{(+)}$	315.7 5	100 16	4826.8	$25/2^{(+)}$	D+Q	$E_{\gamma},I_{\gamma},Mult.:$ from (/Li,4n γ).
	20/2(+)	772.0 7	51 9	4370.5	$27/2^{-}$	D.O	E_{γ},I_{γ} : from ('Li,4n γ).
5/4/.4	$\frac{29}{2^{(+)}}$	604.9 / 2400	100	5142.5 2623-2	$21/2^{(+)}$	D+Q	$E_{\gamma}, I_{\gamma}, Mult.$: from ('L1,4n γ).
0110.0	1/2(*)	3490 3775	4.50	2025.2	$(3/2^{+}, 1/2^{+})$		
		3806	2.5 5	2310.0			
		4109	2.0 10	2006.9			
		4511	2.4 8	1608.26	$(3/2)^+$		
		4657	15.7 19	1457.36	$9/2^+$		
		4822 5970	2.4 0 47 3 7	1292.09	(3/2) $7/2^+$		
		6115	100.0 9	0.0	$5/2^+$		
6239.6	$(35/2^{-})$	1136.0 7	100	5103.6	$31/2^{(-)}$		
6878.6	7/2+	5066		1816	(7 (2))		
		5094 5227		1/86.47	$(5/2^+)$		
		5299		1580.05	(9/2)		
		5357		1520.89	9/2+		
		5422		1457.36	9/2+		
		6732		145.4434	7/2+ 5/2+	N/1	
		68//		0.0	5/2	MII	$\alpha(1PF)=0.00211630$ $\Gamma(\gamma_0)=0.017eV.9(1972W_021,1979M_019)$
7186.5	5/2	6066	4.3 22	1117.67	$11/2^{-}$		$1(\gamma_0) = 0.017 \text{ eV} (1772 \text{ (021,177)} \text{ (1017)}).$
		7042	14.1 23	145.4434	7/2+		
		7188	100.0 32	0.0	5/2+		
7255.8	5/2-	5590 ⁰	10.2 40	1666?			
		5659 5823	6.6 40 <8 7	1596.6?	3/2+		
		6124	10.1 51	1126.83	$3/2^+$		
		7111	64.9 57	145.4434	7/2+		
		7256	100.0 79	0.0	5/2+	E1	α (IPF)=0.00259 4
7630 7	5/2+	1811 1	311	2786.2			$1(\gamma_0)=0.110 \text{ eV } 10 (19/2 \text{Wo21}).$
/030.7	5/2	4932 4	5.14	2699?			
		5043 4	1	2586.1			
		5066 4	1	2563.9	$(5/2^-, 7/2^-)$		
		5108 4	3.1 4	2520.15	$(3/2^+)$		
		5138 4 5284 4	3.1.4	2400 2345 87	$(9/2^+)$		
		22017	5.1 /	2010.07	(-/=)		

$\gamma(^{141}\text{Pr})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
7630.7	5/2+	5360 4	2	2270.1			
	,	5397 4	16.7	2234	3/2		
		5616 4	1	2018.12	$(3/2^+)$		
		5785 4	5.2 6	1842.14	$(7/2^+)$		
		5982 4		1650.85	$(9/2^+)$		
		6050 4	3.1 4	1580.05	5/2-		
		6120 4		1510.3?			
		6181 4	18.8 2	1452.36	$(7/2)^+$		
		6195 4	15.6 2	1436.12	3/2+		
		6339 4	1	1292.69	$(5/2)^+$		
		6502 4	17.7 2	1126.83	$3/2^{+}$		
		7487 <i>4</i>	15.6 2	145.4434	7/2+		
		7632 4	100 10	0.0	5/2+	M1	α (IPF)=0.002282 32
	T (D)		100		T (D)		$\Gamma(\gamma_0)=0.036 \text{ eV } 8 \text{ in } (\gamma,\gamma') (1979\text{Mo19},1972\text{Wo21}).$
7915.2	5/2+	7915	100	0.0	5/2+	M1	B(M1)(W.u.)=0.0007/3
							$\alpha(\text{IPF}) = 0.002339/33$
0000 5	(5 0, 7 0)	(027	24.2.62	1042.2			$I(\gamma_0)=0.002 \text{ eV } I \text{ in } (\gamma,\gamma') (19/9\text{Mo19},19/2\text{Wo21}).$
8880.5	(5/2, 1/2)	6937 7026	24.2 03	1943.3	(7/0+)		
		7030	9.5 50	1842.14	$(1/2^{+})$		
		7228	18.0 57	1030.83	$(9/2^{+})$		
		1310	12.5 34	1310.37	$(5/2)^+$		
		1300	4 3	1292.09	$(3/2)^{+}$		
		0/33	14.9 44	143.4434	1/2* 5/2+		
		0000	100.0 73	0.0	5/2		

[†] From $(n,n'\gamma)$ unless noted otherwise. From either $(^{7}\text{Li},4n\gamma))$ or (γ,γ) for each level in the interval 4742-6240 of excitation energies, and from (γ,γ) only up to 8883.

38

⁵ I γ (1910 γ)/I γ (1765 γ)=42/58 (n,n' γ) (1994De56). [#] Additional information 5. [@] Additional information 6. [&] Placement of transition in the level scheme is uncertain.

 $^{141}_{59} \mathrm{Pr}_{82}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁴¹₅₉ Pr₈₂

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{141}_{59} Pr_{82}$

 $^{141}_{59} \mathrm{Pr}_{82}$

 $^{141}_{59} Pr_{82}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{141}_{59} \mathrm{Pr}_{82}$

 $^{141}_{59} \mathrm{Pr}_{82}$

 $^{141}_{59} \mathrm{Pr}_{82}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

